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Abstract: In this article, we investigate connected signed graphs which have a connected star complement
for both 2− and 2 (i.e. simultaneously for the two eigenvalues), where 2− (resp. 2) is the least (largest)
eigenvalue of the adjacency matrix of a signed graph under consideration. We determine all such star
complements and theirmaximal extensions (again, relative tobotheigenvalues). As anapplication,weprovide
a new proof of the result which identifies all signed graphs that have no eigenvalues other than 2− and 2.
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1 Introduction

A signed graph Ġ is a pair G σ,( ), where G is an (unsigned) graph V E,( ), called the underlying graph, and

σ E: 1, 1{ }⟶ − is the sign function or signature. The order of Ġ, denoted by n, is the number of its vertices.

The edge set of Ġ consists of positive and negative edges determined by σ. We interpret a graph as a signed
graph whose signature assigns 1 to each edge.

The adjacency matrix AĠ of Ġ is the 0, 1, 1( )− -matrix of size n n× obtained from the adjacency matrix of
its underlying graph by reversing the sign of each entry which corresponds to a negative edge. The

eigenvalues of Ġ are the eigenvalues of its adjacency matrix, and they form the spectrum of Ġ.
We consider connected star complements (this notion is defined in the next section) for 2− as the least

eigenvalue which are simultaneously star complements for 2 as the largest eigenvalue. We determine
all such star complements and their maximal extensions. As an application we provide a new proof of
the result from [1–3] which determines all signed graphs with exactly two distinct eigenvalues: 2− and 2.
This result is interesting because, according to [2], a signed graph whose spectrum lies in 2, 2[ ]− is an
induced subgraph of a signed graph with eigenvalues 2− and 2.

Section 2 is preparatory. Our contribution is reported in Sections 3 and 4.

2 Preliminaries

We use λ and Λ to denote the least and the largest eigenvalue of a signed graph, respectively.

For a subset U V Ġ( )⊆ , let ĠU denote the signed graph obtained by switching the sign of the edges

between U and V G U˙( )⧹ . The signed graphs Ġ and ĠU are said to be switching equivalent.
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A cycle in a signed graph is said to be positive if the product of its edge signs is 1. Otherwise, it is said to
be negative. A signed graph is balanced if it does not contain a negative cycle, for otherwise it is unbalanced.

In the reminder of this section, we introduce the concepts of star complements and signed line graphs.
The first concept is a natural extension of the concept developed in the framework of unsigned graphs and
can also be found in [4]. The second concept, which can be found in [5,6], is tailored for the spectral theory
of signed graphs and differs in sign from that of [7].

2.1 Star complements in signed graphs

Let Ġ be a signed graph. A subset X of V Ġ( ) is said to be a star set for the eigenvalue ν of multiplicity k if

X k∣ ∣ = and ν is not an eigenvalue of G X˙
− . The induced subgraph G X˙

− is the corresponding star comple-
ment for ν.

The following result is a “signed” generalization of the well-known Reconstruction theorem [8, The-
orem 5.1.7].

Theorem 2.1. Let Ġ be a signed graph with
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where AX is the adjacency matrix of the subgraph induced by X V Ġ( )⊂ . Then X is a star set for ν if and only if ν
is not an eigenvalue of C and
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If X is a star set for the eigenvalue ν, X k∣ ∣ = , and Ġ has order n, then we define a bilinear form on n k� −

as follows:

νI Cx y x y, .1( )⟨ ⟩ ≔ −

⊺ −

Also, if u X∈ then we write bu for the characteristic vector of the neighbourhood of u in the corresponding
star complement; this vector carries the signs of the corresponding edges.

From Theorem 2.1 we have:
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We now introduce some additional terminology and notation related to star complements. Given a

signed graph Ḣ , we fix a vertex u V Ḣ( )∉ and a subset U V Ḣ( )⊆ , and we let H U˙ ( ) be a signed graph
obtained by inserting an edge between u and every vertex of U and taking a particular signature for these

edges. If ν is an eigenvalue of H U˙ ( ) but is not an eigenvalue of Ḣ , we say that u, U and H U˙ ( ) are a good

vertex, a good set, and a good extension for ν, respectively. Moreover, we say that the vertices u v V H, ˙( )∉

are compatible for ν (and the same is said for the corresponding sets U V, ) if u v, are good and
b b, 0, 1, 1u v { }⟨ ⟩ ∈ − . Theorem 2.1 tells us that a vertex set X in which all vertices are good and compatible

in pairs affords a good extension Ġ in which X and Ḣ are a star set and a star complement for ν. If such a

signed graph Ġ is not a proper induced subgraph of some other signed graph with the same star comple-
ment for the same eigenvalue, then Ġ is referred to as amaximal signed graph with star complement Ḣ for ν
or a maximal extension of Ḣ for ν.
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2.2 Signed line graphs

Given a signed graph Ġ, we introduce the vertex-edge orientation η V G E G: ˙ ˙ 0, 1, 1( ) ( ) { }× ⟶ − which
obeys (a) η i jk, 0( ) = if i j k,{ }∉ , (b) η i ij, 1( ) = or η i ij, 1( ) = − , and (c) η i ij η j ij σ ij, ,( ) ( ) ( )= − . Since each

edge receives two orientations, η is also referred to as a bi-orientation. A bi-directed graph G G η˙ ˙ ,η ( )=

consists of Ġ together with the bi-orientation η.
The (vertex-edge) incidence matrix Bη is the matrix whose rows and columns are indexed by the vertices

and the edges of Ġ, respectively, such that its i e,( )-entry is equal to η i e,( ). We have

B B I A2 ,η η Ġη( )= +

⊺

�

where Ġη( )� is taken to be the signed line graph of Ġη. Note that Ġη( )� depends on the bi-orientation η, but a
different bi-orientation results in a switching equivalent signed graph. Therefore, we have a signed line
graph of Ġ which is unique up to switching, and we denote it by Ġ( )� . In this context, Ġ is called a signed
root graph (of Ġ( )� ).

Since B Bη η
⊺ is positive semidefinite, we have λ Ġ 2( ( )) ≥ −� . A signed graph that is not a signed line

graph, but whose least eigenvalue is 2≥− , is called an exceptional signed graph.
In a signed graph, two parallel edges (located between the same pair of vertices) form a cycle of length 2

called a digon. A digon is positive if its edges have the same sign, and negative if they differ in sign. In

particular, the existence of a positive digon in Ġ implies the existence of parallel edges in Ġ( )� . Also, a

negative digon produces non-adjacent vertices in Ġ( )� . A signed graph which allows parallel edges if and

only if they form negative digons is called a simply signed graph. Accordingly, Ġ( )� has no multiple edges if

and only if Ġ is a simply signed graph.

Moreover, given an unsigned graph G, we define the signed doubled graph G̈ as the signed graph
obtained by inserting a parallel negative edge between every pair of adjacent vertices of G. We know

from [6] that if G is regular of order n and vertex degree r, then the spectrum of G̈( )� is r2 1 ,n[ ( )−

2 n r 1( ) ]( )
−

− , where in the exponential notation, the exponent stands for the eigenvalue multiplicity.
The following result is taken from [9]. Recall that a connected signed graph whose order is equal to its

number of edges is called unicyclic.

Lemma 2.2. A connected signed graph Ġ with λ Ġ 2( ) > − belongs to one of the following classes:
(i) Signed line graphs of trees.
(ii) Signed line graphs of unbalanced unicyclic simply signed graphs.
(iii) Exceptional signed graphs whose least eigenvalue is 2>− .

We know from [9,10] that the signed graphs of Lemma 2.2(iii) have at most eight vertices.

3 Star complements for ±2
We start by determining the potential star complements for 2± in the role of the least and the largest
eigenvalue.

Theorem 3.1. The spectrum of a connected signed graph Ġ lies in 2, 2( )− if and only if Ġ is switching equivalent
to an induced subgraph of (at least) one of the signed graphs illustrated in Figure 1.

Proof. First, we confirm by inspection that the spectrum of each of the first ten signed graphs in Figure 1 lies
in 2, 2( )− , and the same holds for their induced subgraphs by the eigenvalue interlacing argument. For the
remaining two (the negative quadrangle with two hanging paths and the negative even cycle), we observe
that both are signed line graphs and in both cases the corresponding root is an unbalanced unicyclic simply
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signed graph. Therefore, their least eigenvalues are greater than 2− by Lemma 2.2(ii). Moreover, since both
are bipartite, their spectra are symmetric about 0, and we are done.

Conversely, let Ġ be a connected signed graph whose spectrum lies in 2, 2( )− . First, Ġ does not contain
an odd cycle as an induced subgraph, since depending on the signature for such a cycle we have either

λ 2= − or Λ 2= (where λ and Λ are defined at the beginning of Section 2). Next, Ġ cannot contain a positive

even cycle as an induced subgraph, for otherwise both λ Ġ∣ ( )∣ and GΛ ˙( ) are at least 2. Hence, all induced

cycles in Ġ are negative and of even length. We proceed with more restrictions:

(i) Ġ cannot contain an induced negative even cycle with at least eight vertices and a hanging edge.

(Otherwise, Ġ would contain the Smith graph obtained by attaching a hanging edge at the central
vertex of a 7-vertex path, with λΛ 2= − = .)

(ii) Ġ cannot contain an induced signed graph in which two negative even cycles share more than one edge.
(Observe that such an induced graph necessarily contains a negative odd cycle or a positive even cycle
as an induced subgraph.)
By examining connected signed graphs with negative even cycles of length at most six and taking into

account the restrictions of (i) and (ii), we arrive at the desired solutions. □

We denote the order of a star complement by t and proceed by determining maximal extensions of the
candidates for star complements with t 9≥ . According to the previous theorem, there are five types of
possible star complements for 2− and 2: (a) the negative quadrangle with two paths attached at its non-
adjacent vertices, (b) the negative quadrangle with a single path attached at one of its vertices, (c) a path
with an edge attached at the vertex labelled 2, (d) a path, and (e) an even negative cycle. We demonstrate
two methods, one in case (a) and the other in case (c), and then comment on the remaining cases.

We start with the star complement (a) for both 2± .

Proposition 3.2. For t 9≥ , C̈t( )� is the unique maximal extension of the signed graph (a) for 2± .

Proof. Since t 9≥ , the maximal extension, say Ġ, is a signed line graph. We observe next that the star
complement is also a signed line graph of a t 1( )− -vertex path with a negative digon; we denote this signed

root graph by Ḣ . Therefore, Ġ is obtained by inserting the maximum number of edges in Ḣ and then taking

Figure 1: Connected signed graphs whose spectrum lies in ( )−2, 2 . Here and in subsequent figures, dashed lines represent
negative edges.
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the signed line graph of the resulting root graph. Note that the edges between non-adjacent vertices of Ḣ are

disallowed since their existence produces positive triangles in Ġ which cannot exist because the largest
eigenvalue of a positive triangle with an attached edge is greater than 2. The remaining edges are the two

edges (one positive and the other negative) between the pendant vertices of Ḣ and the edges that form

negative digons. By inserting all of them we obtain the signed graph of Figure 2. This is C̈t( )� , and its

spectrum is in 2 , 2t t[ ( ) ]− (from the formula in Section 2). Therefore, C̈t( )� is indeed the maximal extension
for 2− and 2. This extension is unique since it includes all possible good vertices. □

We now investigate the graph (c) by a different method. We denote this graph by Zt and observe that Zt
is a subgraph of the last but one signed graph of Figure 1, and so we can transfer the vertex labelling from
this figure. If C is the adjacency matrix of Zt, then the matrix M I C4 2 1( )= −

− is

M

t t t t
t t t t
t t t t
t t t t

2 2 2 2 3 4 2
2 2 2 2 3 4 2

2 2 2 2 4 2 4 3 8 4
2 3 2 3 4 3 4 3 8 4
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2 2 4 4 4 4
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⋯

⋯

(1)

which can be confirmed by direct computation. Thus for i 3≥ , the ith row of the upper triangle of the
symmetric matrix M is k i k i k i4 1 , 4 , 4 1 , ,4( ( ) ( ) ( ) )− + − − − … .

We first eliminate the possibility that u has at least four neighbours in Zt. (We recall the reader that the
vertex u and the corresponding set U are defined in Section 2.1.)

Lemma 3.3. If Z Ut( ) is good, then U 3∣ ∣ ≤ .

Proof. If U 5∣ ∣ ≥ , then (as odd triangles are disallowed) Z Ut( ) necessarily contains K1,5 as an induced
subgraph, with λ 2< − . If U 4∣ ∣ = , then by simple reasoning we conclude that, unless t 4= or t 8= and
U 1, 4, 6, 8{ }= , Z Ut( ) contains a forbidden induced subgraph that is a negative odd cycle with a hanging
edge, or a positive even cycle with a hanging edge, or K1,4 with an edge attached at one of its pendant
vertices. The critical cases are considered by inspection, and the lemma follows. □

Next we determine the good vertices for Zt.

Figure 2: Signed line graph ( )� C̈t .
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Lemma 3.4. With the notation above, a vertex u and a corresponding set U are good for Zt as a star
complement for 2± if and only if one of the following holds:
(i) (a) U t1, 2,{ }= with σ u σ u1 2( ) ( )= − , (b) U 1, 2, 4{ }= with σ u σ u σ u1 2 4( ) ( ) ( )= = − ,
(ii) U i i, 2{ }= + with i t3 2≤ ≤ − and σ ui σ u i 2( ) ( ( ))= − + ,
(iii) U t 1{ }= − ,
(iv) t 8= , and either U is one of i, 4, 6{ }, i, 4, 8{ }, i, 6, 8{ }, i, 4{ }, i, 6{ }, i, 8{ }, where i 1, 2{ }∈ and the edges

from u alternate in sign, or U i i 1, 2{ } ( { })= ∈ .

Proof. We set b b bb b , , ,u t1 2( )= = …

⊺. Evidently Z Ut( ) is good for 2 if and only if b b, 2⟨ ⟩ = , where the
bilinear form is determined by the matrix (1).

Suppose first that U 3∣ ∣ = , and let u be adjacent to the vertices 1, 2, and i. We have

I C
b b t b t b t i b b t b r b t i

b b t i b t i b t i

b b b b4 , 4 2
2 2 1 2 2 1

2 1 2 1 4 1 .
i i

i i

1

1 1 2 2 1 2

1 2

( )

( ( ) ( )) ( ( ) ( ))

( ( ) ( ) ( ))

⟨ ⟩ = −

= + − + − + + − + + − +

+ − + + − + + − +

⊺ −

For i 4≠ , we have b b1 2= − (otherwise, Z Ut( ) contains the positive quadrangle with a hanging edge), and so
without loss of generality we may assume that b b1, 11 2= = − . This leads to t ib b4 , 4 2( )⟨ ⟩ = − + , and so
b b, 2⟨ ⟩ = if and only if i t= . For i 4= , we obtain b b, 2⟨ ⟩ = with σ u σ u σ u1 2 4( ) ( ) ( )= = − . Since in both
situations the spectrum of Z Ut( ) is symmetric, we also have that U is good for 2− , and (i) is completed.

Now suppose that u is adjacent to 1, i, and j ( i j t3 ≤ < ≤ ). In a very similar way, we find that tb b4 ,⟨ ⟩ =

with σ u σ ui σ uj1( ) ( ) ( )= − = . Hence t 8= , with the solutions (iv) computed directly.
Finally, if u is adjacent to i j k, , ( i j k t3 ≤ < < ≤ ), then we have t i j kb b, 1⟨ ⟩ = − + − + with

σ ui σ uj σ uk( ) ( ) ( )= − = . The equality t i j k 1− + − = holds only for k t= and i j 1= − , but in this case
Z Ut( ) contains a negative triangle with a hanging edge, and this implies λ Z U 2t( ( )) < − .

Suppose now that U 2∣ ∣ = . Then U 1, 2{ }≠ since in this case either ZΛ 2t( ) > or Z Ut( ) is a signed line
graph of an unbalanced unicyclic simply signed graph with λ Z U 2t( ( )) > − . If u is adjacent to 1 and i
( t3 1≤ ≤ ), we find that tb b4 ,⟨ ⟩ = , and as before t 8= along with the given solutions. If u is adjacent to
i and j ( i j t3 ≤ < ≤ ), we have j ib b,⟨ ⟩ = − , and thus Z Ut( ) is good for 2 if and only if j i 2− = .
Simultaneously, Z Ut( ) is good for 2− since its spectrum is symmetric. This completes (ii).

For U 1∣ ∣ = we find easily that Z Ut( ) is good for 2± if and only if U 1{ }= or U 2{ }= , in both cases along
with t 8= , and U t 1{ }= − (for any t). In this way, we have completed (iv) and (iii). □

For the determination of maximal extensions we need the following simple lemma. For a (not neces-
sarily good) vertex u we denote by u∗ the vertex obtained by taking a copy of u (with the same neighbour-
hood in Ḣ ) and switching the sign of all edges incident with u∗.

Lemma 3.5. A vertex u is good for ν if and only if u∗ is good for ν. If u is good, then u u, ∗ are compatible if and
only if ν 0, 1, 1{ }∈ − .

Proof. With the notation of Theorem 2.1, the first part of this lemma follows from b b b b, ,u u u u⟨ ⟩ = ⟨− − ⟩ =

b b,u u⟨ ⟩

∗ ∗ . For the second part, if u is good then we have ν b b b b, ,u u u u= ⟨ ⟩ = −⟨ ⟩

∗ , which means that u u, ∗ are
compatible if and only if ν 0, 1, 1{ }∈ − . □

Now we proceed with maximal extensions.

Proposition 3.6. For t 8≠ , C̈t( )� is the unique maximal extension of Zt for 2± .

Proof. We first consider compatibility between the vertices of Lemma 3.4(i)–(iii). It is convenient to com-
pute the vectors Mbu

⊺ for M defined by (1). With the enumeration of this lemma we find that
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(i)

(a) M σ ut σ u
σ ut σ u

b 4 1, 0, 1, 1, ,1 for 1 1,
4 0, 1, 1, 1, ,1 for 1 1;u

⎧
⎨⎩

( )( ) ( )

( )( ) ( )
=

… =

… = −

⊺

(b) M σ ub 4 1 1, 1, 1, 0, 0, ,0u ( )( )= …

⊺ ;
(ii) M σ uib 4 1, 1, 2, 2, ,2 , 1, 0, 0, ,0u

i
  ( )( )= … …

⊺ ;

(iii) M σ u tb 4 1 1, 1, 2, 2, ,2, 1u ( ( ))( )= − …

⊺ .

Observe now that a vertex u is never compatible with the vertex u∗ defined upon Lemma 3.5. Compat-
ibility between the remaining vertices is given in the scheme below. For example, if u v, are of type (ii), then

M σ ui σ vjb b b b4 , 4 1, 1, 2, 2, ,2 , 1, 0, 0, ,0 0, 0, ,0 , 1, 0, 1, 0, 0, ,0 ,u v u v

i j 1
     ( )( ) ( )( )⟨ ⟩ = = … … … − …

⊺

−

⊺

which gives the assertion.

Type of u Type of v Compatibility
(i.a) (i.a) u v≁

(i.a) (i.b) u v≁

(i.a) (ii) u v≁

(i.a) (iii) u v~ with σ uv σ ut σ v t 1( ) ( ) ( ( ))= − −

(i.b) (ii) u v≁ , unless V 3, 5{ }= when u v~ with σ uv σ u σ v4 3( ) ( ) ( )=

(i.b) (iii) u v≁ , unless t 4= when u v~ with σ uv σ u σ v4 3( ) ( ) ( )=

(ii) (ii) u v≁ , unless U i i V i i, 2 , 1, 3( ) ( )= + = + + when u v~
with σ uv σ ui σ v i 1( ) ( ) ( ( ))= − +

(ii) (iii) u v≁ , unless U t t2,( )= − when u v~ with σ uv σ ut σ v t 1( ) ( ) ( ( ))= −

It follows that good vertices for Zt can be partitioned into two halves in such a way that for every good
vertex u, its non-compatible pair u∗ belongs to different half. In addition, by the scheme above all vertices in
one half are mutually compatible and comprise a maximal extension, while the vertices of the other
half lead to a switching equivalent extension. In other words, there is a unique maximal extension of Zt

(for t 8≠ ). We construct it on the basis of the vertex compatibility, and obtain C̈t( )� . □

In the same way, we find that the maximal extension of Z8 is the second signed graph of Figure 3. For
the remaining candidates for star complements (those of (b), (d), and (e)) one can choose between the

Figure 3: Exceptional signed graphs with spectrum [ ( ) ]2 , −27 7 and [ ( ) ]2 , −28 8 , respectively.
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foregoing methods. (Observe that all of them are signed line graphs, and so the first method is applicable.)
The first method is restricted to t 9≥ , and the resulting maximal extension is unchanged. For t 8≤ and the
remaining potential star complements (those of Figure 1 and their connected induced subgraphs) we can
choose between a direct computation and brute force, i.e. a computer search which can be performed very
quickly since the signed graphs under consideration are of small order. In any case, we obtain just two

solutions that deviate from C̈t( )� , namely the signed graphs illustrated in Figure 3; one can easily deduce
that both are exceptional.

4 Signed graphs with spectrum [ ( ) ]2 , −2t t

Now we are ready to give an alternative proof of the result in [1–3].

Theorem 4.1. A connected signed graph has spectrum 2 , 2t t[ ( ) ]− if and only if it is one of the signed graphs
illustrated in Figures 2 and 3.

Proof. With a slight modification in the proof of [8, Theorem 5.1.6] we get that every signed graph has a
connected star complement for each of its eigenvalues. Therefore, the result follows unless there is a

connected signed graph, say Ġ, with given spectrum for which there is no common star complement for

2− and 2. In this case, Ġ has t2 vertices and contains a connected star complement, say Ḣ , for 2− , but not for

2, which implies HΛ ˙ 2( ) = .

If Ġ is a signed line graph, then by Lemma 2.2 Ḣ is the signed line graph of either a tree or an
unbalanced unicyclic simply signed graph.

In the former case, we find that Ḣ contains a positive triangle with a hanging edge (along with a

contradiction HΛ ˙ 2( ) > ) unless Ḣ is a complete unsigned graph, but in this case we have t 3≤ , which is

easily resolved (a triangle in the role of Ḣ leads to G C˙ 3̈( )≅ � ).
In the latter case, we have the same situation (a positive triangle with a hanging edge) unless Ḣ is the

unbalanced quadrangle with at most two hanging paths (Figure 1) or Ḣ is a positive cycle. In the first case,

contrary to the assumption, we have HΛ ˙ 2( ) < . In the second case, by considering good vertices we find that

Ḣ can be transformed into a star complement common to both eigenvalues.

The situation in which Ġ is exceptional is resolved by inspecting potential star complements with six,
seven, and eight vertices. □

We note that exceptional signed graphs with eight vertices of Figure 1 are star complements for the
second signed graph of Figure 3, while their induced subgraphs with seven vertices correspond to the first
signed graph of the same figure.

We conclude our consideration with the following characterization.

Theorem 4.2. Every signed graph with spectrum 2 , 2t t[ ( ) ]− is determined by one of the following star com-
plements for 2± : Zt, or the negative hexagon with a hanging edge, or the negative hexagon with two hanging
edges attached at vertices at distance 3.

Proof. The result follows from Theorem 4.1 and the subsequent discussion. □
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