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Abstract: We consider a particular class of signed threshold graphs and their eigenvalues. If Ġ is such a thresh-
old graph and Q(Ġ ) is a quotient matrix that arises from the equitable partition of Ġ , then we use a sequence 
of elementary matrix operations to prove that the matrix Q(Ġ ) − xI (x ∈ R) is row equivalent to a tridiagonal 
matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain 
intervals in which Ġ has no eigenvalues.
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1 Introduction

A signed graph Ġ is a pair (G, σ), where G = (V , E) is an (unsigned) graph, and σ : E −→ {+1, −1} is the 
signature or the sign function. The edge set of a signed graph is composed of subsets of positive and negative 
edges. Throughout the paper we interpret a graph as a signed graph with all the edges being positive.

The adjacency matrix A of Ġ is obtained from the adjacency matrix of its underlying graph by reversing 
the sign of all 1’s which correspond to negative edges. The eigenvalues of Ġ are identi�ed to be the eigenvalues 
of A .

A threshold graph (also known as a nested split graph) is a {2K2, P4, C4}-free graph, i.e., it does not con-
tain any of listed graphs as an induced subgraph. To explain the structure of threshold graphs, we par⋃tition 
their set of vertices into the 2h cells U1, U2, . . . , Uh, V1, V2, . . . , Vh. Now, the subgraph induced by i=1 Vi 
(resp. 

⋃
i=1 Ui) is complete (resp. totally disconnected), while all the vertices in Ui are adjacent to all the ver-

tices in Vj precisely when i ≤ j. The size of Ui is denoted by ti and the size of Vj is denoted by sj. A schematic 
representation of a threshold graph is illustrated in Fig 1. For more details on these graphs (including a wide 
branch of applications) we refer the reader to [10, 11].

Observe that a threshold graph is connected whenever sh ≥ 1. Since every disconnected threshold graph 
is composed of a connected one and a set of isolated vertices, in this paper we restrict ourselves only to con-
nected ones. We also assume that all the cells are non-empty.

In what follows we consider the class of signed threshold graphs with the following signature:
– the edges between di�erent cells are always positive;
– the edges within each cell Vi are either all positive or all negative.
We denote this class by T .
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Figure 1: The structure of a threshold graph.

The problem of �nding eigenvalue-free intervals has already been considered for threshold graphs with
respect to the spectrum of the adjacencymatrix in [1, 6, 7]. If we restrict ourselves to signed graphs, then there
are no relevant references. This paper is prepared in the same spirit as [2], where the eigenvalue-free interval
for threshold graphs (and chain graphs) with respect to distance spectrum were considered.

The paper is organized as follows. Two preliminary results are stated in the short Section 2. In Section 3
we consider the characteristic polynomial of the adjacency matrix of a signed threshold graphs de�ned as
above. In Section 4 we deal with the interval (−1, 0), and we also consider the multiplicity of the eigenvalues
0 and −1. In Section 5we show that in certain intervals the characteristic polynomials of our signed threshold
graphs have constant sign, which proves that these intervals are eigenvalue free. Finally, in Section 6 we give
some concluding remarks on multiplicity of the eigenvalues.

2 Background
Let M denote an n × n real symmetric matrix, and let its rows and columns be indexed by S = {1, 2, . . . , n}.
Let further S1 t S2 t · · · t Sk be a partition of S, which determines a blocking of M into the blocks Mi,j. If
each blockMi,j has a constant row sum, saymi,j, the corresponding partition is called equitable, and the k×k
matrix Q = [mi,j] is called the quotient matrix ofM. The following result can be found in Section 2.3 of [3] (see
also [4]).

Theorem 2.1. [3] LetM be a real symmetricmatrixwith a quotientmatrixQ. Then the characteristic polynomial
of Q divides the characteristic polynomial of M.

The next theorem gives su�cient conditions for a tridiagonal matrix (with positive diagonal entries) to have
positive determinant.

Theorem 2.2. [9] Let M = [mi,j] be an n × n real tridiagonal matrix with positive diagonal entries. If

mi,i−1mi−1,i <
1
4mi,imi−1,i−1

1
cos2( π

n+1 )
, for 2 ≤ i ≤ n,
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then det(M) > 0.

3 The characteristic polynomial of signed graphs in T

Let u and v be the vertices belonging to the same cell of a signed threshold graph Ġ ∈ T . Consider the vector
x de�ned in the following way: all its coordinates are zero except for those corresponding to u and v which
are taken to be 1 and −1. Ifw is the row of AĠ corresponding to some vertex w /∈ {u, v}, thenw ·x = 0 (where
· stands for the standard inner product). Also, if u (resp. v) is the row of AĠ corresponding to the vertex u
(resp. v), then u · x = v · x = 0, if u, v ∈ Ui, u · x = 1, v · x = −1 if u, v ∈ Vi with negative edges and u · x = −1,
v · x = 1 if u, v ∈ Vi with positive edges. Thus, x is an eigenvector of the AĠ associated to the eigenvalue 0, 1
or −1 (depending on which cell selected vertices belong to). We record this in the following lemma.

Lemma 3.1. For Ġ ∈ T , let {1, 2, . . . h} = I t J, such that for all i ∈ I, Vi has negative edges, and for all j ∈ J
either the edges of Vj are positive or sj = 1 (for short, Vj has no negative edges). Then:
(i) 0 is an eigenvalue of Ġ with multiplicity at least

∑h
i=1(ti − 1);

(ii) 1 is an eigenvalue of Ġ with multiplicity at least
∑

i∈I(si − 1);
(iii) −1 is an eigenvalue of Ġ with multiplicity at least

∑
j∈J(sj − 1).

To consider the remaining eigenvalues, we �rst observe that the partition U1 ∪V1 ∪U2 ∪V2 ∪ · · ·∪Uh ∪Vh of
the vertex set of Ġ induces an equitable partition of its adjacency matrix. The corresponding quotient matrix
Q (= Q(Ġ)) is given by

Q(Ġ) =



0 s1 0 s2 0 · · · sh−1 0 sh
t1 ε1(s1 − 1) 0 s2 0 · · · sh−1 0 sh
0 0 0 s2 0 · · · sh−1 0 sh
t1 s1 t2 ε2(s2 − 1) 0 · · · sh−1 0 sh

...
. . .

...

0 0 0 0 0 · · · 0 0 sh
t1 s1 t2 s2 t3 · · · sh−1 th εh(sh − 1)


,

where εk = 1 if k ∈ J and εk = −1 if k ∈ I. In other words,

Q(Ġ)2i−1,2j−1 = 0, Q(Ġ)2i−1,2j =
{
sj if i ≤ j,
0 if i > j,

Q(Ġ)2i,2j−1 =
{
ti if i ≥ j,
0 if i < j

and

Q(Ġ)2i,2j =


si − 1 if i = j and the edges of Vi are positive,
1 − si if i = j and the edges of Vi are negative,
sj if i = ̸ j.

We can now de�ne two types of eigenvalues of AĠ according to their associated eigenvectors. According
to Theorem 2.1 each one of 2h eigenvalues of Q(Ġ) is also an eigenvalue of AĠ. These eigenvalues are of the
�rst type: every eigenvector of AĠ corresponding to an eigenvalue of its quotient matrix Q(Ġ) is constant on
the parts of the partition, i.e. the coordinates corresponding to vertices belonging to the same cell are equal.
With the procedure explained at the beginning of Section 2 we can de�ne the n − 2h linearly independent
eigenvectors associated to the eigenvalues 0, 1 or −1 of the second type, all of them being orthogonal to the
eigenvectors corresponding to the eigenvalues of the �rst type (i.e. their coordinates sum up to zero on each
part of the partition). From these observations and from Lemma 3.1 and Theorem 2.1 it now easily follows that
the characteristic polynomial of Ġ is given by

ϕ(AĠ , x) = x
t−h(x + 1)α(x − 1)βϕ(Q(Ġ), x), (3.1)
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where t =
∑h

i=1 ti, α is the number of vertices in cells with negative edges and β is the number vertices in cells
with positive edges. Of course, for s =

∑h
i=1 si, α + β = s − h.

We next apply a sequence of elementary row operations to simplify the computation of ϕ(Q(Ġ), x) =
det(Q(Ġ) − xI2h). We �rst perform:
– R2i−1 ← R2i−1 − R2i+1, for 1 ≤ i ≤ h − 1,
– R2h−1 ← R2h−1,
– R2 ← R2,
– R2i ← R2i − R2i−2, for 2 ≤ i ≤ h
and we obtain

−x s1 x 0 0 · · · 0 0
t1 ε1s1 − ε1 − x 0 s2 0 · · · 0 sh
0 0 −x s2 x · · · 0 0
0 (1 − ε1)s1 + ε1 + x t2 (ε2 − 1)s2 − ε2 − x 0 · · · 0 0

...
. . .

...

0 0 0 0 0 · · · −x sh
0 0 0 0 0 · · · th (εh − 1)sh − εh − x


.

We proceed with:
– R2i−1 ↔ R2i, for 1 ≤ i ≤ h,
giving 

t1 ε1s1 − ε1 − x 0 s2 0 · · · 0 sh
−x s1 x 0 0 · · · 0 0
0 (1 − ε1)s1 + ε1 + x t2 (ε2 − 1)s2 − ε2 − x 0 · · · 0 0
0 0 −x s2 x · · · 0 0

...
. . .

...

0 0 0 0 0 · · · th (εh − 1)sh − εh − x
0 0 0 0 0 · · · −x sh


.

Finally, by
– R1 ← R1 −

∑h
i=1 R2i,

we obtain the tridiagonal matrix

Tx =



t1 + x (ε1 − 1)s1 − ε1 − x
−x s1 x

(1 − ε1)s1 + ε1 + x t2 (ε2 − 1)s2 − ε2 − x
−x s2 x

. . . . . . . . .

th (εh − 1)sh − εh − x
−x sh



.

Now, by (3.1), we obtain

ϕ(AĠ , x) = (−1)hxt−h(x + 1)α(x − 1)β det(Tx). (3.2)
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4 The interval (−1, 0) and multiplicity of 0 and −1
We consider the sign of det(Tx). Denote further

ch =
1

4 cos2( π
2h+1 )

, (4.1)

and let I and J be as in Lemma 3.1. According to Theorem 2.2, we have det(Tx) > 0 whenever the following
inequalities hold:
1. x(x + 2s1 − 1) < ch(t1 + x)s1, if V1 has negative edges and x(x + 1) < ch(t1 + x)s1, otherwise,
2. x(x + 2si − 1) < ch tisi, for i ∈ I\{1},
3. x(x + 2si − 1) < ch ti+1si, for i ∈ I\{1},
4. x(x + 1) < ch tjsj, for j ∈ J\{1},
5. x(x + 1) < ch tj+1sj, for j ∈ J\{1},
6. t1 + x > 0.
First, notice that, since t1 ≥ 1,wehave t1+x > 0, for x ∈ (−1, 0]. Also, for x < 0, we have x(x+2si−1) ≤ x(x+1)
(as si ≥ 1holds for1 ≤ i ≤ h). Thus, for x ∈ (−1, 0], all the left hand sides of the above inequalities are negative,
while the right hand sides are positive; hence, det(Tx) > 0. This precisely means that ϕ(Q(Ġ), x) has no zeros
in the interval x ∈ (−1, 0], and also that 0 is an eigenvalue of Ġ with multiplicity exactly

∑h
i=1(ti − 1).

If, in addition, t1 > 1, then t1 − 1 > 0, and in a very similar way we deduce that det(T−1) > 0 meaning
that, in this case, −1 is not a zero of ϕ(Q(Ġ), x), i.e., it is an eigenvalue of Ġ with multiplicity exactly α.

In what follows, we consider the case t1 = 1 in more details. Suppose �rst that V1 has no negative edges,
and take into account the following submatrices of Tx:

A =



s1 x
x + 1 t2 (ε2 − 1)s2 − ε2 − x

−x s2
. . . . . . . . .

th (εh − 1)sh − εh − x
−x sh


(4.2)

of the size 2h − 1 and

B =



t2 (ε2 − 1)s2 − ε2 − x
−x s2 x

(1 − ε2)s2 + ε2 + x t3
. . . . . . . . .

th (εh − 1)sh − εh − x
−x sh


(4.3)

of the size 2h − 2.
Using the Laplacian expansion of det(Tx) along the �rst row, we obtain det(Tx) = (1 + x)

(
det(A) −

x det(B)
)
. It is clear that, in this case, det(T−1) = 0, and so −1 is a zero of ϕ(Q(Ġ), x). It is also clear that both

matrices A and B have positive diagonal, and that, for x = −1, we have x(x + 2si − 1) ≤ x(x + 1) = 0 < ch tisi
and x(x + 2si − 1) ≤ x(x + 1) = 0 < ch tisi−1, for all 2 ≤ i ≤ h. According to Theorem 2.2, for x = −1,
det(A) − x det(B) > 0, so, −1 is a zero of ϕ(Q(Ġ), x) with multiplicity one. Thus, by (3.2), −1 is an eigenvalue
of Ġ with multiplicity exactly α + 1.

Suppose now that, for t1 = 1, V1 has negative edges (this in particular implies that s1 > 1). We have
det(Tx) = (1 + x) det(A′) − x(2s1 + x − 1) det(B), where A′ di�ers from A only in the (2, 1)-entry, which is now
2s1 + x −1. Again, B has a positive diagonal, and for x = −1, we have x(x +2si −1) < x(x +1) = 0 < ch tisi and
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x(x + 2si − 1) < x(x + 1) = 0 < ch tisi−1, for all 2 ≤ i ≤ h. Thus, according to Theorem 2.2, we have det(T−1) > 0,
which means that −1 is not a zero of ϕ(Q(Ġ), x), and −1 is an eigenvalue of Ġ with multiplicity exactly α.

Gathering the above results, we arrive at the following.

Theorem 4.1. A signed graph Ġ ∈ T has no eigenvalues in (−1, 0). If for any i ∈ {2, . . . h}, Vi has no negative
edges, then:
(i) 0 is an eigenvalue of Ġ with multiplicity

∑h
i=1(ti − 1);

(ii) if either t1 > 1 or t1 = 1 and V1 has negative edges, then −1 is an eigenvalue of Ġ with multiplicity
∑

i∈I(si −
1);

(iii) if t1 = 1 and V1 has no negative edges, then −1 is an eigenvalue of Ġ with multiplicity 1 +
∑

i∈I(si − 1).

Remark 4.2. If the signed threshold graph Ġ has no negative edges, clearlyϕ(AĠ , x) = ϕ(AG , x). In this case,
Theorem 4.1 recovers the corresponding results for unsigned graphs obtained by di�erent methods in [6, 8].

5 Eigenvalue free intervals
We determine eigenvalue free intervals under the additional assumption that t1 > 1 or t1 = 1 and V1 has no
negative edges. First, we consider the interval (−∞, 0).

Suppose that t1 = 1 and that V1 has no negative edges. Recall that, in this case, there must be det(T−1) =
0, and recall the submatricesA andB of Tx givenby (4.2) and (4.3).Wehavedet(Tx) = (1+x)

(
det(A)−x det(B)

)
,

so if x < −1 and if det(A) and det(B) are positive, then it follows that det(Tx) is negative.
Consider now the positivity of det(A) and det(B). If the parameter ch is de�ned by (4.1) and I t J rep-

resents the partition of {1, 2, . . . , h} described in Lemma 3.1, then by Theorem 2.2, we conclude that both
determinants are positive whenever the conditions (2)–(5) described in Section 4 hold.

Denote further
ah = min

2≤i≤h−1
{s1t2, si ti+1, si ti , sh th}. (5.1)

Since for x < 0, we have x(x + 2si − 1) < x(x + 1), it follows that both determinants are positive whenever
x ∈

(−1−√1+4chah
2 , −1

)
, which implies det(Tx) = ̸ 0. In other words, Ġ has no eigenvalues in that interval.

Similarly, for t1 > 1, we immediately get det(T−1) > 0, and by Theorem 2.2, det(Tx) > 0 holds if the
conditions (1)–(6) described in Section 4 hold.

Now, for x < 0, we have x(x + 2si − 1) < x(x + 1), and so det(Tx) > 0 whenever x ∈ I1 ∩ I2, where

I1 =
(−1 −√1 + 4chah

2 , −1
)
, I2 = (−t1, 0) .

These considerations lead to the following theorem.

Theorem 5.1. For a signed graph Ġ ∈ T , we have:
(i) if t1 = 1 and V1 has no negative edges, then Ġ has no eigenvalues in

(
−1−

√
1+4chah
2 , −1

)
;

(ii) if t1 > 1, then Ġ has no eigenvalues in (−S , −1),

where the parameters ch and ah are de�ned by (4.1) and (5.1), respectively, and S = min
{
1+

√
1+4chah
2 , t1

}
.

Since 4chah > 1 and −1−
√
2

2 > −t1 (for t1 > 1), we have a direct consequence.

Corollary 5.2. A signed graph Ġ ∈ T has no eigenvalues in
(
−1−

√
2

2 , −1
)
.

We proceed with the assumption that x > 0. Here, t1 + x > 0 and Tx has a positive diagonal. By Theorem 2.2,
we have det(Tx) > 0 whenever the conditions (1)–(5) described in Section 4 hold.
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Observe that, for x > 0, x(x + 1) < x(x + 2si − 1) holds, and denote

M = min
2≤i≤h−1

{
s1ch − 2s1 + 1 +

√
(2s1 − 1 − s1ch)2 + 4ch t1s1

2 ,

1 − 2si +
√
(2si − 1)2 + 4ch tisi

2 , 1 − 2si +
√
(2si − 1)2 + 4ch ti+1si

2 , (5.2)

1 − 2sh +
√
(2sh − 1)2 + 4ch thsh

2

}
.

It follows that det(Tx) > 0 holds whenever x ∈ (0,M), which leads to the following theorem.

Theorem 5.3. A signed graph Ġ ∈ T has no eigenvalues in (0,M), where the parameterM is de�ned in (5.2).

A similar reasoning leads to the conclusion that if G is a threshold graph, then det(Tx) > 0 holds whenever
the following inequalities hold: x(x +1) < ch(t1 + x)s1, x(x +1) < ch tjsj and x(x +1) < ch tj+1sj. If x > 0, then
we have ch t1s1 < ch(t1 + x)s1, which implies the following.

Theorem 5.4. A threshold graph G has no eigenvalues in
(
0, −1+

√
1+4chah
2

)
, where the parameters ch and ah

are de�ned by (4.1) and (5.1), respectively.

Again, the inequality 4chah > 1 gives an immediate consequence.

Corollary 5.5. A threshold graph G has no eigenvalues in
(
0, −1+

√
2

2
)
.

Remark 5.6. Corollary 5.2 covers a particular case of threshold graphs. In conjunction with Corollary 5.5,
it leads to the conclusion that, apart from the eigenvalues −1 and 0, the interval

(−1−√2
2 , −1+

√
2

2
)
does not

contain an eigenvalue of any threshold graph – a result obtained in [6].

6 Some remarks on multiplicity of eigenvalues
We conclude with the following observation. It is known from [8] that, in a threshold graph, all the eigenval-
ues distinct from 0 and −1 are simple. This is not true for signed threshold graphs. An example is a signed
threshold graph of T determined by the parameters h = 3, s1 = 2, s2 = 8, s3 = 1, t1 = 3, t2 = 1, t3 = 9,
and in which, apart from those of V1, all the edges are positive. Its eigenvalues (distinct from 0 and −1) are:
12.9050, 2.3678, 0.4248, −3.6977 and −3 with multiplicity 2.

On the other hand, we can easily see that a signed graph of T cannot have an eigenvalue (distinct from 0
and −1) with multiplicity greater than 2. Indeed, considering the eigenvalue λ /∈ {−1, 0}, we get det(Tλ) = 0.
Now, if we delete the last two columns and the �rst and the last row from (the triagonal matrix) Tλ (see the
end of Section 3), then we obtain a diagonal matrix with non-zero diagonal elements, so the rank of Tλ is at
least 2h − 2. Consequently, the multiplicity of λ is at most 2.
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