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Abstract—We consider the controllability of multi-agent dy-
namical systems modeled by a special class of bipartite graphs,
called chain graphs. Our particular attention is focused on chain
graphs that have one repeated degree. We derive properties of
eigenvectors of graphs under consideration as well as some of
their Laplacian spectra. On the basis of the obtained theoretical
results, we determine the minimum number of leading agents
that make the system in question controllable and locate them
in the corresponding graph.

Index Terms—Chain graph, Laplacian spectrum, Eigenvec-
tors, Controllable dynamical system

I. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph (without loops or
multiple edges) of order n = |V (G)|. By A(G) we denote
its (0, 1)-adjacency matrix. If D(G) is the diagonal matrix of
vertex degrees, then L(G) = D(G) − A(G) stands for the
Laplacian matrix of G. The Laplacian eigenvalues of G are
the eigenvalues of L(G) and they form σ(G), the Laplacian
spectrum of G.

We consider a multi-agent system with n linear agents
{1, 2, . . . , n} modeled by a graph G. If xi denotes the state of
the agent i, its dynamics is described by the single integrator

ẋ(t) = −
∑

j∈N(i)

(xi(t)− xj(t)),

where N(i) denotes the set of neighbours of i. The compact
dynamics can be written as ẋ(t) = −L(G)x(t), where x is the
vector of the agents’ states and L(G) is the graph Laplacian.

Following [6] by ` and f we denote affiliations with leaders
and followers. A follower graph Gf of G is the subgraph
induced by the set of followers. Consequently, the graph
Laplacian L(G) of G may be written as

L(G) =

(
Lf (G) lf`(G)
lᵀf`(G) L`(G)

)
. (I.1)

The control system we consider is the leader-follower system(
ẋf (t)
u̇(t)

)
= −

(
Lf (G) lf`(G)
lᵀf`(G) L`(G)

)(
xf (t)
u(t)

)
,

where followers evolve through the Laplacian-based dynamics

ẋf (t) = −Lf (G)xf (t)− lf`(G)u(t), (I.2)

and u denotes the external control signal ran by the leaders’
states.

The system modeled by (I.2) is said to be controllable if it
can be driven from any initial state to any desired final state in
a finite time. In the study of the controllability of multi-agent
systems, the main problem is to determine the locations of
leaders under which the controllability can be realized. The
multi-agent system (I.2) is said to be k-leaders controllable
if there exist minimum number of k leaders to make (I.2)
controllable. In particular, if k = 1, the system (I.2) is called
single leader controllable.

We recall a useful argument for further analysis of control-
lability of multi-agent systems.

Lemma I.1. ([5]) The system (I.2) is controllable if and only
if there is no eigenvector for L(G) taking 0 on all entries
corresponding to leaders, i.e. if and only if L(G) and Lf (G)
do not share any common eigenvalues.

Multi-agent systems arise in many areas of science and
engineering (see for example [1], [5], [7], [8], [10], [12]).
In this paper we focus on controllability of chain graphs, in
particular to chain graphs with one repeated degree. Chain
graphs are 2K2, C3, C5 graphs, which implies that they are
also bipartite graphs. We determine the minimum number of
leaders needed to make the corresponding system (I.2) mod-
eled by such a graph controllable and provide the locations
of leaders in the graph.

The paper is organized as follows. In Section II we give
some preliminary results on the structure of chain graphs
and on their spectrum. In Section III we present several
results concerning Laplacian spectrum and eigenvectors of
chain graphs with one repeated degree. In Section IV we
consider the controllability of systems (I.2) modeled by a
corresponding chain graph. In Section V we present several
concluding remarks.
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II. PRELIMINARIES

The Laplacian matrix L(G) of any graph G is symmetric
and positive semidefinite. Moreover, 0 is an eigenvalue of G
afforded by the all-1 vector j. Therefore, we may assume that
the eigenvalues of G (in fact, the roots of the characteristic
polynomial φ(L(G), x) = det(xI − L(G))) are indexed in
non-increasing order and given as follows:

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 .

We denote by σ(G) the spectrum of G, i.e. the multiset of its
eigenvalues.

The vertex set of a chain graph G consists of two colour
classes that are partitioned into h non-empty cells

⋃h
i=1 Ui

and
⋃h

i=1 Vi, respectively. All vertices in Us are joined to all
vertices in

⋃h+1−s
k=1 Vk, for 1 ≤ s ≤ h. Therefore, all vertices

in Ui (resp. Vj) are co-neighbours, i.e. they share the same set
of neighbours. If ms = |Us| and ns = |Vs|, for 1 ≤ s ≤ h,
then G is denoted by

DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) .

A chain graph is sketched in Figure II.1.

U1

U2

Uh−1

Uh

m1

m2

mh−1

mh

Vh

Vh−1

V2

V1

nh

nh−1

n2

n1

Fig. II.1. The chain graph G = DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh).

If we follow the vertex ordering from the partition(⋃h
i=1 Ui

)
∪
(⋃h

i=1 Vi
)
, then the quotient matrix Q(G) of

a chain graph G has the form

d1 −n1 · · · −nh−1 −nh

d2 −n1 · · · −nh−1

. . .
... . .

.

dh −n1

−m1 · · · −mh−1 −mh d∗
1

−m1 · · · −mh−1 d∗
2

... . .
. . . .

−m1 d∗
h


.

(II.1)

The corresponding diagonal blocks we shortly denote by
D1, D2, while off-diagonal ones we denote by B1, B2.

It is well-known that every eigenvalue of Q(G) is an
eigenvalue of G. For more results on spectral properties of
chain graphs the reader is referred to [4], [9], [11].

III. LAPLACIAN SPECTRUM OF DNG(k, 1, . . . , 1; 1, . . . , 1)

In this section we investigate spectral properties of chain
graphs with one repeated degree. These graphs are of the form
DNG(k, 1, . . . , 1︸ ︷︷ ︸

h

; 1, . . . , 1︸ ︷︷ ︸
h

). Since G has only one repeated

degree, then k > h.

Theorem III.1. Let DNG(k, 1, . . . , 1︸ ︷︷ ︸
h

; 1, . . . , 1︸ ︷︷ ︸
h

), k > h. Then

σ(G) = {0, hk−1, κ1, κ2, . . . , κ2h−1},

where
κi ∈ (i− 1, i), i ∈ {1, . . . , h− 1}
κh+i ∈ (k + i− 1, k + i), i ∈ {1, . . . , h− 1}
κ2h ≥ k + h,

Proof. Taking into account that di = h + 1 − i, 1 ≤ i ≤ h
and d∗j = k+ h− j, 1 ≤ j ≤ h and employing [13, Theorem
3.5], we get that the characteristic polynomial φ(L(G), x) of
L(G) is given by

x(x−h)k−1
k+h−1∏
i=1

(x−i)

 1

p1
+ x

h∑
j=2

1

(x− dh+2−j)pj
+

1

x− d1

 .

Since x(x − h)k−1 is a factor of φ(L(G), x), the remaining
eigenvalues are the roots of the polynomial

p(x) =

k+h−1∏
i=1

(x−i)

 1

p1
+ x

h∑
j=2

1

(x− dh+2−j)pj
+

1

x− d1

 .

Then we have:
• p(0) = (−1)k+h(2h+ k − 1) (k+h−2)!

h ;
• p(1) = (−1)k+h+1(k + h− 3)(k + h− 3)!;
• p(`) = (−1)k+h+`2`(h + 1)(` − 1)!(k + h − 2` −

2)! (k+h−`−1)!
(k+h−2`)! , for 2 ≤ ` ≤ h− 1;

• p(k) = (−1)h+1 k!
(k−h+1)(k−h) (h− 1)!

• p(k + `) = (−1)h−`+12(`+ 1) (k+`)!
(k+2`−h+1)(k+2`−h) (h−

`− 1)!, for 1 ≤ ` ≤ h− 1;
• p(k + h) = −(k + h− 2) · (h− 1)! < 0.

From the obtained values, we conclude that
p(0), p(1), . . . , p(h − 1) alternate in sign. Therefore, for any
i ∈ {1, 2, . . . , h−1}, we have p(t) = 0, for some t ∈ (i−1, i).
Similar argument holds for p(k), p(k + 1), . . . , p(k + h− 1),
and consequently, for every i ∈ {k + 1, . . . , k + h − 1} we
have p(t) = 0 for some t ∈ (i − 1, i). Also, since p is a
monic polynomial and p(k+ h) < 0, it follows that p(t) = 0
holds for some t > k + h.
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We illustrate the results of Theorem III.1 on the following
example.

Example III.2. Let G = DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1). Then

σ(G) = {13.03, 9.64, , 08.6, 7.58, 6.58, 3.82, 2.86, 1.92, 0.96}
∪ {55, 0}.

Next we observe the structure of eigenvectors of L(G)
corresponding to non-integer eigenvalues.

Theorem III.3. Let G = DNG(k, 1, . . . , 1; 1, 1, . . . , 1) with
k > h, µ a non-integer eigenvalue of G and x =
(x1, x2, . . . , xn)

ᵀ an associated eigenvector. Then xi 6= 0 for
any 1 ≤ i ≤ k.

Proof. We recall first, (see, for example, [13]) a relation
between the eigenvectors of Q(G) and those of G for the same
eigenvalue. A vector v = (y1, y2, . . . , yh, z1, z2, . . . , zh)

ᵀ is
an eigenvector of Q(G) for µ, if and only if the corresponding
eigenvector of G for the same eigenvalue has the form

x = (y1, y1, . . . , y1︸ ︷︷ ︸
k

, y2, . . . , yh, z1, . . . , zh)
ᵀ.

Assume on the contrary that x is an eigenvector for the
non-integer eigenvalue µ of L(G) such that xi = 0, 1 ≤ i ≤
k. By [13, Lemma 3.4], µ is also an eigenvalue of Q(G).
So there exists a non-zero vector (y z)ᵀ ∈ R2h such that
Q(G)(y z)ᵀ = µ(y z)ᵀ with y1 = 0. Then the eigenvalue
equation (

D1 −B1

−B2 D2

)(
y
z

)
= µ

(
y
z

)
can be rewritten as

D1y −B1z = µy

−B2y +D2z = µz.

The matrices B1, B2 have full rank, and therefore are invert-
ible. Next, from

z = B−11 (D1 − µIh)y
y = B−12 (D2 − µIh)z,

we conclude that

y = B−12 (D2 − µIh)B−11 (D1 − µIh)y,

i.e. y is an eigenvector of

P = B−12 (D2 − µIh)B−11 (D1 − µIh)

for the eigenvalue 1. The latter product is the product of two
anti-bidiagonal matrices B−12 (D2 − µIh) that is



(k − µ)/k
−(k − µ)

. .
.

. .
.

(k + h− 2− µ)
(k + h− 1− µ) −(k + h− 2− µ)


and B−11 (D1 − µIh)

(1− µ)
(2− µ) −(1− µ)

. .
.

. .
.

(h− 1− µ)
(h− µ) −(h− 1− µ)


,

and hence it is a tridiagonal matrix with

p1,1 =
(h− µ)(k − µ)

k

p`,` = (h+ 1− `− µ)
(k + `− 1− µ

mh+1−`
+ (k + `− 2− µ)

)
,

2 ≤ ` ≤ h,
p`,`−1 = −(h− `+ 2− µ)(k + `− 2− µ), 2 ≤ ` ≤ h,

p`,`+1 = − (h− `− µ)(k + `− 1− µ)
m`

, 1 ≤ ` ≤ h− 1,

taking into account that m1 = k and mi = 1, i ≥ 2. From
µ /∈ Z, we have p`,`−1, p`,`+1 6= 0.

If y1 = 0, then from the first equation in Py = y we
obtain y2 = 0 (p1,2 6= 0). Next, in the similar way, the second
equation gives y3 = 0, and so on, until we obtain yh = 0,
i.e. y = z = 0.

Therefore, we obtain that x = 0, which is a contradiction.
This completes the proof.

IV. CONTROLLABILITY OF SYSTEMS MODELED BY
DNG(k, 1, . . . , 1; 1, . . . , 1)

Previously obtained results, in this section will be employed to
determine the number of leading agents in (I.2), where the sys-
tem is modeled by a chain graph DNG(k, 1, . . . , 1; 1, . . . , 1)
for k > h.

Theorem IV.1. Let G be a chain graph
DNG(k, 1, . . . , 1; 1, . . . , 1) with k > h. Then the system
(I.2) modeled by G is controllable with k − 1 co-neighbour
vertices in the role of leaders.
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Proof. The eigenvectors corresponding to the eigenvalue h of
the multiplicity k − 1 are of the form

v1 = (1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0)

v2 = (1, 0,−1, 0, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0)

...

vk−1 = (1, 0, . . . , 0, 0,−1︸ ︷︷ ︸
k

, 0, . . . , 0).

We first conclude that vertices {2, . . . , k} should be selected
as leaders. Moreover, any vector corresponding to µ = h is of
the form (t1, . . . , tk, 0, . . . , 0)

ᵀ. Any k−1 of these ti’s cannot
be zeros simultaneously. For any x1, . . . ,xl , l < k− 1 there
exists xs, such that xsxi = 0 for each i, 1 ≤ i ≤ l.

The remaining eigenvalues by Theorem III.1 are non-
integer and therefore their eigenvectors, by Theorem III.3
satisfy xi 6= 0, 1 ≤ i ≤ k. Now the statement follows by
Lemma I.1.

Example IV.2. For G = DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1) the
system (I.2) is 5 leader controllable. The leaders `1, . . . , `5 ∈
U1 are 5 of 6 vertices with repeated degrees, that are joined
to the followers v1, · · · , v5 as illustrated in Figure IV.1.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

`1

`2

`3

`4

`5

Fig. IV.1. A 5-leader controllable system modelled by
DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1).

V. CONCLUSION

In this paper we have covered the controllability of multi-
agent systems that are modelled by special class of bipartite
graphs: chain graphs. We have proved that if a chain graph
has only one repeated degree with multiplicity k, then the
system requires at least k − 1 controllers in order to be
controllable. In this way we positively addressed the questions
raised in [7], where the authors asked if there is a family of

graphs other than threshold graphs with one multiple degree
of multiplicity m for whose controllability at least m − 1
controllers are needed. Consequently, we expanded the known
classes of the controllable multi-agent systems. Taking into ac-
count that many engineering systems are modelled by graphs,
the obtained results are of particular importance in creating
new controllable systems, since the known structures are
limited (they mainly include paths, grids, cycles and circulant
networks). Another advantageous aspect is a possibility to
generate graphs with some desirable properties. One of them
is algebraic connectivity, i.e. the second smallest Laplacian
eigenvalue. It is a useful tool to measure the robustness and
synchronizations of the graphs. For the chain graphs that we
considered the algebraic connectivity is always in (0, 1) and
it approaching to 1 as the size of the graph increases. This
brings another benefit, since in general graphs the algebraic
connectivity usually decreases if the order of a graph is
increased.
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