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Abstract. Nested split and double nested graphs (commonly named nested graphs) are con-

sidered. General statements regarding the signless Laplacian spectra are proven, and the nested

graphs whose second largest signless Laplacian eigenvalue is bounded by a fixed integral constant

are studied. Some sufficient conditions are provided and a procedure for classifying such graphs in

particular cases is provided. Some connections between their structure and some (not only the sec-

ond) eigenvalues of their signless Laplacians are developed. All double nested graphs whose second

largest eigenvalue does not exceed
√
2 are determined.
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1. Introduction. Let G be a graph on n vertices with adjacency matrix A =

AG. The characteristic polynomial PG(x) = det(xI−A) of A is called the characteris-

tic polynomial of G. The matrix Q = D+A, where D is the diagonal matrix of vertex-

degrees in G, is called the signless Laplacian matrix of G, and QG(x) = det(xI −Q)

is the Q-polynomial of G. The eigenvalues and the spectrum of A (resp. Q) are also

called the eigenvalues (resp. signless Laplacian eigenvalues; brieflyQ-eigenvalues) and

the spectrum (resp. signless Laplacian spectrum; briefly Q-spectrum) of G. Since the

mentioned matrices are real and symmetric, their eigenvalues are real. Thus, the spec-

trum and the signless Laplacian spectrum we shall denote by λ1(G), λ2(G), . . . , λn(G),

and κ1(G), κ2(G), . . . , κn(G), respectively. In the sequel we shall usually suppressG in

our notation; in addition, we assume that λi ≥ λi+1 and κi ≥ κi+1, i = 1, 2, . . . , n−1.
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The largest eigenvalues in these spectra will be called the index and the Q-index, re-

spectively.

By the term nested graphs we refer to two classes of graphs: the nested split graphs

(briefly, NSGs) and their bipartite equivalents double nested graphs (briefly, DNGs).

We recall their definitions in the next section. Both classes play an important role

in the research concerning the graphs with maximal (Q-)index. Namely, it is known

that graph with maximal index or maximal Q-index and fixed order and size is an

NSG (see, for example, [5, p. 231]) or a DNG if it is bipartite (see [1, 3]).

The problem of determining the graphs whose second largest eigenvalue is boun-

ded by some (relatively small) number is well studied. The graphs whose second

largest eigenvalue does not exceed 1
3 or

√
2 − 1 are determined, while the graphs

satisfying λ2 ≤
√
5−1
2 are well characterized but not completely determined (see [9]).

Additionally, there are various results regarding the cases λ2 ≤ 1 (see [11] and the

references therein), λ2 ≤
√
2 (see [12]) and λ2 ≤ 2 (see [9]), but they are still unsolved.

Such research mostly focusses on the classification of graphs or the description of

their structure regarding their spectral properties (especially, regarding their second

largest eigenvalue). So far there are no such results concerning the second largest

Q-eigenvalue (see [2, 7] for example).

The graphs whose second largest eigenvalue does not exceed 1 (and further
√
2 or

2) are determined only if they belong to some specific classes (not to be listed here).

Even then, the corresponding bound is a relatively small number. For example, all

NSGs satisfying λ2 ≤ 1 are determined in [10] and [8], and here we determine all

DNGs satisfying λ2 ≤
√
2. It turns out that the graphs belonging to the same classes

can be much easily sorted according to their second largest Q-eigenvalues. Moreover,

it turns out that some structural properties of these graphs are closely connected to

their second largest (but also some other) Q-eigenvalues.

The paper is organized as follows. In Section 2 some preliminary definitions and

results are given in order to make the paper more self-contained. In Section 3 we give

some general results regarding the signless Laplacian spectrum. Next we consider the

nested graphs whose second largest Q-eigenvalue does not exceed a prescribed integral

constant; we provide some sufficient conditions for this property and consider some

particular cases. Some structural properties of these graphs are also given. In Section

4 we determine all DNGs whose second largest eigenvalue does not exceed
√
2. The

graphs obtained are given in the Appendix.

2. Preliminaries. The graphs having no induced subgraphs 2K2, P4 or C4 are

called (by P. Hansen) nested split graphs (or NSGs). The vertices of an arbitrary NSG

can be partitioned into 2h cells
⋃h

i=1 Ui and
⋃h

i=1 Vi, where the subgraph induced by
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⋃h

i=1 Ui (resp.
⋃h

i=1 Vi) is a complete (resp. totally disconnected) graph, while all

vertices in Ui are adjacent to all vertices in Vj if and only if i ≤ j.

Similarly the vertex set of any connected double nested graph (or DNG) consists of

two colour classes (or co-cliques), and both of which are partitioned into h non-empty

cells
⋃h

i=1 Ui and
⋃h

i=1 Vi, respectively. All vertices in Ui are adjacent to all vertices

in
⋃h+1−i

j=1 Vj , for i = 1, 2, . . . , h.

We use the common name, nested graphs, for both NSGs and DNGs. Let (in both

cases) mi = |Ui|, ni = |Vi|, i = 1, . . . , h. Then we have that the set of all vertices

of the corresponding nested graph G is V =
⋃h

i=1 Ui ∪
⋃h

i=1 Vi, while ν = |V | =
∑h

i=1(mi + ni). An arbitrary NSG (resp. DNG) will be denoted by

NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) (resp. DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh)).

In general, an arbitrary nested graph will be denoted by NG(m1,m2, . . . ,mh;n1, n2,

. . . , nh). Note that an NSG (resp. a DNG) is connected whenever m1 (resp. both m1

and n1) is greater than zero. If any of the remaining parameters is equal to zero, we

again get a nested graph with a smaller parameter h, so we usually assume that each

of these parameters is greater than zero.

Let us now introduce the so-called divisor concept, which will be widely used in

this paper. Given an s× s matrix D = (dij), let the vertex set of a multigraph G be

partitioned into non-empty subsets V1, V2, . . . , Vs so that for any i, j ∈ {1, 2, . . . , s}
each vertex from Vi is adjacent to exactly dij vertices of Vj . The multigraph H

with adjacency matrix D is called a front divisor of G, or briefly, a divisor of G ([6,

Definition 2.4.4]). (Note that the Q-matrix of any graph can be considered as the

adjacency matrix of the corresponding multigraph bearing in mind that each diagonal

entry is equal to the number of loops of the corresponding vertex, and therefore the

previous concept can be applied, as well.)

A (Q-)eigenvalue of a graph G is a main (Q-)eigenvalue provided the correspond-

ing (Q-)eigenvector is not orthogonal to (1, 1, . . . , 1)T (compare [6, p. 25, Theorem

2.2.3]). Otherwise, the (Q-)eigenvalue is called a non-main (Q-)eigenvalue. The main

part of the (Q-)spectrum of G contains only its main (Q-)eigenvalues.

The characteristic polynomial of a divisor divides the characteristic polynomial

(or a Q-polynomial) of a graph (cf. [6, p. 38]), and due to [6, Theorem 2.4.5] of the

(Q-)spectrum of any divisor H of graph G includes the main part of the (Q-)spectrum

of G.

If G is an arbitrary graph and u a vertex, then Γ(u) and Γ[u] denote open and

closed neighbourhoods of u, respectively; so Γ(u) = {v ∈ V (G) | v ∼ u} while

Γ[u] = Γ(u)∪{u}. Two vertices are duplicate (coduplicate) if their open (resp. closed)

neighbourhoods are the same. It is known that any pair of duplicate (resp. codu-
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plicate) vertices gives rise to an eigenvector of G for 0 (resp. −1) defined as follows:

all its entries are zero except those corresponding to u and v which can be taken to

be 1 and −1, or vice versa. Thus any collection with k mutually duplicate (resp.

coduplicate) vertices gives rise to k − 1 linearly independent eigenvectors for 0 (resp.

−1). Similarly, any collection of k mutually duplicate (resp. coduplicate) vertices of

degree d in a graph G gives k − 1 Q-eigenvalues of G all equal to d (resp. d − 1)

where the corresponding Q-eigenvectors are formed in the same way. In addition,

all these eigenvalues and Q-eigenvalues are non-main (according to the corresponding

definition). We finish this section with the following formula (compare [4, Theorem

2.17]):

PS(G)(x) = xm−nQG(x
2),(2.1)

where G has n vertices, m edges, while S(G) denotes its subdivision (the graph

obtained by inserting a vertex in each of its edges).

3. Nested graphs with bounded second largest Q-eigenvalue. The com-

plete product G1∇G2 of (disjoint) graphs G1 and G2 is the graph obtained from the

union of disjoint copies of the graphs G1 and G2 by joining each vertex of G1 to each

vertex of G2. The following result concerns the Q-polynomial of the complete product

of two regular graphs.

Theorem 3.1. Given regular graphs G1 (on n1 vertices) and G2 (on n2 vertices)

having degrees r1 and r2, respectively. Then

QG1∇G2(x) =
QG1(x− n2)QG2(x− n1)

(x− 2r1 − n2)(x− 2r2 − n1)

(

(x− 2r1 − n2)(x − 2r2 − n1)− n1n2

)

.

Proof. Recall that a Q-eigenvalue of any regular graph G is main if and only if it

is equal to its Q-index (compare [4, p. 403], and have in mind that PG(x) = QG(x+r)

for regular graphs of the degree r).

We have

QG1∇G2 =

[

QG1
+ n2In1

J

JT QG2
+ n1In2

]

,

where Ini
i = 1, 2 is the unit matrix of the corresponding size, while J denotes n1×n2

matrix with each entry equal to 1. Since the divisor of (the Q-matrix of) G1∇G2 has

the form

[

2r1 + n2 n2

n1 2r2 + n1

]

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 181-201, October 2012

http://math.technion.ac.il/iic/ela



ELA

Nested graphs with bounded second largest (signless Laplacian) eigenvalue 185

we get that its Q-polynomial contains
(

(x − 2r1 − n2)(x − 2r2 − n1) − n1n2

)

as a

factor.

Assume first that both G1 and G2 are connected. Let κ2(G1), . . . , κn1(G1) and

κ2(G2), . . . , κn2(G2) be their non-mainQ-eigenvalues, and let e1(G1), . . . , en1(G1) and

e1(G2), . . . , en2(G2) be the corresponding Q-eigenvectors. Having in mind that each

of these Q-eigenvectors is orthogonal to the “all ones” vector, by direct computation

we get that κ2(G1) +n2, . . . , κn1(G1)+n2 and κ2(G2)+n1, . . . , κn2(G2)+n1 are the

Q-eigenvalues of G1∇G2 where κi(G1) + n2 (resp. κi(G2) + n1) corresponds to the

Q-eigenvector whose first n1 (resp. last n2) coordinates coincide with the coordinates

of ei(G1) (resp. ei(G2)) while the remaining coordinates are zeros. Therefore, we get

the above formula.

Now let G1 and G2 be disconnected graphs having k and l components, respec-

tively. Then, each non-main Q-eigenvalue of G1 and G2 gives the corresponding

Q-eigenvalue of G1∇G2 in the same way as above. Since the sum of all Q-eigenvalues

of G1∇G2 is equal to the trace of QG1∇G2 , it can be verified that k − 1 (resp l − 1)

of the remaining Q-eigenvalues are equal to 2r1 − n2 (resp. 2r2 − n1).

By (2.1) and Theorem 3.1 we have the following result.

Corollary 3.2. Given regular graphs G1 (on n1 vertices) and G2 (on n2 ver-

tices) having degrees r1 and r2, respectively. Then

PS(G1∇G2)(x) = x
n1(r1−2)+n2(r2−2)

2 +n1n2QG1∇G2(x
2).

We now use Theorem 3.1 to compute the Q-polynomials of two specific kinds

of graphs; namely the complete bipartite graphs Kn1,n2 and the graphs Kn1∇n2K1

obtained from Kn1+n2 by removing a clique n2-vertices. Both polynomials will be

used later on.

Corollary 3.3.

QKn1,n2
(x) = (x− n1 − n2)(x − n1)

n2−1(x− n2)
n1−1x;(3.1)

QKn1∇n2K1(x) = (x− n1)
n2−1(x− n1 − n2 + 2)n1−1 ×(3.2)
(

x2 − (3n1 + n2 − 2)x+ 2n1(n1 − 1)
)

.

Now we prove some results regarding nested graphs. It is not hard to check that

an arbitrary disconnected NSG or DNG contains at most one non-trivial component

and a set of isolated vertices. Therefore, we restrict ourselves to the connected graphs,

while with slight modifications all the results can be extended to disconnected cases.
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Lemma 3.4. Let

G = NG(m1, . . . ,mj ,mj+1, . . . ,mh;n1, . . . , nk, nk+1, . . . , nh)

be a connected nested graph having ν vertices, and let

G′ = NG(m1, . . . ,mj + 1,mj+1 − 1, . . . ,mh;n1, . . . , nk, nk+1, . . . , nh)

and

G′′ = NG(m1, . . . ,mj ,mj+1, . . . ,mh;n1, . . . , nk + 1, nk+1 − 1, . . . , nh).

Then

κi(G) ≤ κi(G
′) , for i = 1, . . . , ν;

κi(G) ≤ κi(G
′′) , for i = 1, . . . , ν, whenever G is a DNG;

κi(G) ≥ κi(G
′′) , for i = 1, . . . , ν, whenever G is a NSG.

Proof. Practically, G′ is obtained by adding an appropriate number of edges to a

single vertex of G, while G′′ is obtained in the same way whenever G is a DNG or by

removing the appropriate edges if it is an NSG. The result follows from the fact that

adding the edges to any graph implies the increasing (not necessarily strict) of all its

Q-eigenvalues (see [7]).

Lemma 3.5. Let G = NG(m1, . . . ,mh;n1, . . . , nh) be a connected nested graph

then

κ2(G) ≤ max

{

h
∑

i=1

mi,

h
∑

i=1

ni

}

, whenever G is a DNG; and

κ2(G) ≤ ν − 2 , whenever G is a NSG.

Proof. Using Lemma 3.4, (3.1), and (3.2) we get

κ2(DNG(m1, . . . ,mh;n1, . . . , nh)) ≤ κ2

(

DNG

(

h
∑

i=1

mi,

h
∑

i=1

ni

))

= κ2

(

K∑
h
i=1 mi,

∑
h
i=1 ni

)

≤ max

{

h
∑

i=1

mi,

h
∑

i=1

ni

}

.
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Similarly,

κ2(NSG(m1, . . . ,mh;n1, . . . , nh)) ≤ κ2

(

NSG

(

h
∑

i=1

mi,

h
∑

i=1

ni

))

= κ2

(

K∑
h
i=1 mi

∇
h
∑

i=1

niK1

)

=

h
∑

i=1

(mi + ni)− 2

= ν − 2.

Note that the corresponding bound for NSGs is given in [13] for the graphs ob-

tained by deleting at most ν − 2 edges from Kν . An arbitrary NSG is obtained in

the same way but the number of the deleted edges can be even larger. The results of

Lemma 3.5 can also be compared to [2, Theorem 3.1 and Corollary 3.7].

Before we give a consequence of Lemma 3.5, we take into consideration the re-

maining Q-eigenvalues. Using the concept explained in the previous section we de-

termine the divisors of both types of nested graphs. It is easy to check that the

divisor of a connected NG(m1, . . . ,mh;n1, . . . , nh) has 2h Q-eigenvalues (or possibly

2h − 1 if nh = 0 for NSG). The remainder of the Q-spectrum consists of non-main

Q-eigenvalues. They are determined in the next theorem.

Theorem 3.6. Let G = NG(m1, . . . ,mh;n1, . . . , nh) be a connected nested graph.

Then 2h of its Q-eigenvalues are determined by its divisor, and the remaining Q-ei-

genvalues are

h+1−i
∑

j=1

mj with multiplicity mi − 1 (i = 1, . . . , h) and

h+1−i
∑

j=1

nj with multiplicity ni − 1 (i = 1, . . . , h)

if G is a DNG, or

h
∑

j=1

mj +
∑

j≥i

nj − 2 with multiplicity mi − 1 (i = 1, . . . , h) and

∑

j≥i

mj with multiplicity ni − 1 (i = 1, . . . , h)

if G is an NSG.
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Proof. Assume that G is a DNG, then each set Ui or Vi, i = 1, . . . , h, contains

mutually duplicate vertices (see the previous section). These vertices give the listed

Q-eigenvalues.

If G is an NSG then each set Ui (resp. Vi) contains mutually coduplicate (resp.

duplicate) vertices giving the listed Q-eigenvalues.

The next theorem is an immediate consequence of Lemma 3.5.

Theorem 3.7. Let G be a connected nested graph with maximum degree ∆(G).

Then κ2(G) ≤ ∆(G) if G is a DNG, and κ2(G) ≤ ∆(G) − 1 if G is an NSG.

Proof. Note that if G is a DNG then ∆(G) = max
{

∑h

i=1 mi,
∑h

i=1 ni

}

, while if

G is an NSG then ∆(G) = ν − 1. Since κ2(G) does not exceed the bounds given in

Lemma 3.5, we obtain the result.

In fact, the previous theorem provides sufficient conditions that the second largest

Q-eigenvalue of a nested graph does not exceed α (∈ N) (it can be checked that the

given bounds do not hold for any graph). In the following example we determine all

NSGs satisfying κ2 ≤ 4, while the similar procedure can be applied in any other case1.

Example 3.8. Let G = NSG(m1, . . . ,mh;n1, . . . , nh) be connected. If κ2(G) ≤ 4,

then either the maximum vertex degree does not exceed 5 or G is an induced sub-

graph of one of the following NSGs: NSG(1, 3; 3), NSG(1, 1, 1; 2, 2), NSG(1, 2; 3, 1),

NSG(1, 1, 1; ∗, 1), NSG(1, 1; ∗, 2), NSG(1, 1; 2, 3).

Namely, due to Theorem 3.7 we have κ2(G) ≤ 4 whenever ∆(G) ≤ 5. Now it

remains to consider the NSGs whose maximum vertex degree is greater than 5. In

particular, this means that each vertex in U1 has degree greater than 5, but using

Theorem 3.6 we get that the parameter m1 must be equal to 1 (otherwise κ1 > 4).

Having in mind that the remaining Q-eigenvalues given in the same theorem must also

be bounded by 4, we obtain very restrictive conditions for the remaining parameters.

Finally, by direct computation we get the listed NSGs.

Now we give some relations between the structural properties of nested graphs

and their Q-eigenvalues. If, with no loss of generality, we assume that
∑h

i=1 ni =

max
{

∑h

i=1 mi,
∑h

i=1 ni

}

for some DNG G, then κ2(G) = ∆(G) whenever m1 ≥ 2

(see Theorem 3.6). Moreover, in this case we have κ2(G) = κ3(G) = · · · = κm1(G) =

∆(G). Similarly, if G is a connected NSG then κ2(G) = ∆(G) − 1 whenever m1 ≥ 2

as well as κ2(G) = κ3(G) = · · · = κm1(G) = ∆(G).

The remaining non-main Q-eigenvalues considered in Theorem 3.6 are all integral

and closely connected to the values mi and ni (i = 1, . . . , h), describing the graph

1Here, in Example 4.11 and in Tables 1-4 (given in Appendix), ‘∗’ stands for any positive integer.
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structure as well.

As we pointed out, the graph with maximal Q-index of fixed order and size is an

NSG. Here we provide the following result.

Theorem 3.9. Let G = NSG(m1, . . . ,mh;n1, . . . , nh) have ν > 2h vertices,

and let mi, ni > 0, i = 1, . . . , h. Then each of non-main Q-eigenvalues mentioned in

Theorem 3.6 does not exceed ν− 2. All of them attain this bound if m1 = ν− 2h+1.

Proof. Since
∑h

i=1(mi + ni) = ν we get that these Q-eigenvalues do not exceed

ν−2, attaining this bound ifm1 has the maximum possible value, i.e., m1 = ν−2h+1,

while the remaining parameters are all equal to 1.

Using (2.1) and [4, Theorem 2.19], the results of this section can be transferred

to the adjacency spectrum of subdivision graphs and line graphs.

4. Double nested graphs with λ2 ≤
√
2. In this section we consider the

adjacency spectra of specified graphs. In fact, we determine all connected DNGs

whose second largest eigenvalue does not exceed
√
2. Since each disconnected DNG

contains at most one non-trivial component and a set of isolated vertices, in this way

we determine all DNGs satisfying this condition. We start with the results considering

the structure and the spectral properties of these graphs. The results starting from

Theorem 4.5 are more technical and very similar to the results obtained in [10] and

[8], so we only present the complete proof of this theorem. The remaining statements

are proved in a very similar way. Additionally, all DNGs obtained are listed in the

Appendix. We also give an example concerning DNGs with λ2 ≤ 1.

To simplify some expressions we write (a1, a2, . . . , a
k+1
i , ai+k+1, . . . , an) whenever

n-tuple (a1, a2, . . . , an) satisfies ai = ai+1 = · · · = ai+k, 1 ≤ i, i+ k ≤ n.

Let G be an arbitrary connected DNG. It is easy to check that the partition of

the vertex set of G into non-empty subsets U1, U2, . . . , Uh, V1, V2, . . . , Vh determines

a divisor H of G. The 2h× 2h adjacency matrix AH has the following form:

AH =































0

n1 n2 . . . nh−1 nh

n1 n2 . . . nh−1 0
...

...
. . .

...
...

n1 0 . . . 0 0

m1 m2 . . . mh−1 mh

m1 m2 . . . mh−1 0
...

...
. . .

...
...

m1 0 . . . 0 0

0
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Theorem 4.1. Let λ be a nonzero eigenvalue of the connected DNG G, and let

H be the divisor of G. Then λ is an eigenvalue of H.

Proof. There are exactly 2h eigenvalues of G that belong to its divisor as well; the

remaining are non-main and correspond to the sets of duplicate vertices. Therefore,

each of them is equal to zero.

The following corollary is an immediate consequence of the previous theorem.

Corollary 4.2. Let G be an arbitrary DNG, H its divisor and let k ∈ R, k > 0.

Then

(i) λ2(G) ≤ k if and only if λ2(H) ≤ k.

(ii) PG(k) ≤ 0 (resp. PG(k) > 0) if and only if PH(k) ≤ 0 (resp. PH(k) > 0).

This corollary enables us to consider the spectrum of the divisor H of graph G

instead of the spectrum of G itself. It is easy to see that if PH(
√
2) > 0 holds, then

the second largest eigenvalue of H is greater than
√
2, and thus the second largest

eigenvalue of G is greater than
√
2, as well. Moreover, we get the following lemma.

Lemma 4.3. Let G = DNG(m1, . . . ,mi, . . . ,mh;n1, . . . , nj, . . . , nh) be a DNG,

H be its divisor and k ∈ R, k > 0. Then

(i) If λ2(DNG(m1, . . . ,mi−1, 1,mi+1, . . . ,mh;n1, . . . , nh)) < k, and PH(k) < 0

for every mi ∈ N then

λ2(DNG(m1, . . . ,mi−1,mi,mi+1, . . . ,mh;n1, . . . , nh)) < k

for every mi ∈ N.

(ii) If

λ2(DNG(m1, . . . ,mi−1, 1,mi+1, . . . ,mh, n1, . . . , nj−1, 1, nj+1, . . . , nh)) < k,

and PH(k) < 0 for every mi, nj ∈ N then

λ2(DNG(m1, . . . ,mi,mi+1, . . . ,mh, n1, . . . , nj−1, nj, nj+1, . . . , nh)) < k

for every mi, nj ∈ N.

Proof. (i) By Corollary 4.2, PH(k) < 0 implies PG(k) < 0. Assume to the

contrary, i.e., λ2(DNG(m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mh;n1, . . . , nh)) < k, but

λ2(DNG(m1, . . . ,mi−1,mi,mi+1, . . . ,mh;n1, . . . , nh)) ≥ k. First, if

λ2(DNG(m1, . . . ,mi−1,mi,mi+1, . . . ,mh;n1, . . . , nh)) = k,

then we get PH(k) = PG(k) = 0 contrary to assumption. Furthermore,

λ2(DNG(m1, . . . ,mi−1,mi,mi+1, . . . ,mh;n1, . . . , nh)) > k
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and PG(k) < k imply that there are at least 3 eigenvalues of

DNG(m1, . . . ,mi−1,mi,mi+1, . . . ,mh;n1, . . . , nh)

greater than k. Also, at most one eigenvalue of its vertex-deleted subgraph

DNG(m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mh;n1, . . . , nh)

satisfies this condition which is impossible by the Interlacing Theorem (see [4, Theo-

rem 0.10]). This is a contradiction.

Applying the similar reasoning but on two parameters mi and nj we easily get

the statement (ii).

The next lemma gives an upper bound on the parameter h in a connected DNG

satisfying λ2 ≤
√
2.

Lemma 4.4. Let G = DNG(m1, . . . ,mh;n1, . . . , nh) be a connected DNG with

λ2 ≤
√
2. Then h ≤ 6.

Proof. Suppose h > 6. Consider an induced subgraph G′ of G, obtained by

deleting the cells U2, . . . , Uh−3, V3, . . . , Vh−4 and all but one vertex in each one of the

remaining ten cells. Direct computation shows that the second largest eigenvalue of

the graph G′ is greater than
√
2 and thus (by the Interlacing Theorem) the second

largest eigenvalue of the graph G is greater than
√
2, as well.

Now we determine all connected DNGs with λ2 ≤
√
2. Due to Lemma 4.4,

λ2(G) ≤
√
2 implies h ≤ 6. So, naturally, we consider all possible values of h. The

property λ2(G) ≤
√
2 is a hereditary one (meaning that if a graphG has that property,

that is also a property of each induced subgraph of G). If it occurs that a graph G

has a given hereditary property, but at the same time no supergraph of G possesses

it, then G is called a maximal graph for the observed property.

Clearly, we have λ2 ≤
√
2 for any DNG satisfying h = 1 (the second largest

eigenvalue of a complete bipartite graph is equal to zero). Now we consider the next

case.

Theorem 4.5. Let G = DNG(m1,m2;n1, n2) be a connected DNG satisfying

λ2(G) ≤
√
2. Then G is an induced subgraph of one of the graphs 1-26 given in Table

1.

Proof. We compute that

PH(
√
2) = 4− 2(n1m2 +m1n1 +m1n2) +m1n1m2n2.(4.1)

Putting m2 = 2, n2 = 1 in this expression we get PH(
√
2) = 4− 4n1− 2m1, so in this

case PH(
√
2) < 0 for every m1, n1 ∈ N. We can also check that λ2(DNG(1, 2; 1, 1)) ≤
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√
2 holds. So, according to Lemma 4.3, we have λ2(DNG(m1, 2;n1, 1)) ≤

√
2 for every

m1, n1 ∈ N. The corresponding family of graphs is represented as family G1 of Table

1. Furthermore, the parametersm2 and n2 cannot be increased ifm1 ≥ 15 and n1 ≥ 3.

That fact is easily checked by direct calculation of the spectra of DNG(15, 3; 3, 1) and

DNG(15, 2; 3, 2) – for these two graphs λ2 >
√
2. The similar application of Lemma

4.3 leads us to the conclusion that families of graphs G2 and G3 of Table 1 also satisfy

the condition λ2 <
√
2, for every m1, n2 ∈ N; G2 having PH(

√
2) = −2m1, and G3

having PH(
√
2) = −4m1. Again, it is forbidden (for sufficiently large values of m1

and n2) to increase the values of the parameters m2 and n1 if we want to keep the

property λ2 ≤
√
2 in families G2 and G3. Graph G4 of Table 1 gives us the upper

bound on parameters m2 and n2, that is, G4 has λ2 =
√
2, and it is maximal (checked

by direct computation).

Three families of graphs, and one finite maximal graph described above determine

the boundaries within which we are going to find the rest of the maximal DNGs (or

families of DNGs) that satisfy the condition λ2 ≤
√
2.

We start from the family G1, by increasing the parameter m2, and letting n2 = 1,

but if m1 ≤ 2 then for n1 ∈ N, and m2 ∈ N we get graphs of family G3 (if m1 = 2) or

subgraphs of graphs belonging to family G2 (if m1 = 1). So, we have m1 ≥ 3, n2 = 1,

and m2 ≥ 3. By putting m1 = 3, n1 = n2 = 1 into (4.1) we get PH(
√
2) = m1 − 8,

and thus we also have m1 ≤ 8. Finally, cases to be considered arise: (m2, n2) ∈
{(i, 1), i = 3, . . . , 8}:

(i) m2 = 3, n2 = 1, PH(
√
2) = (m1 − 6)(n1 − 2)− 8. If 3 ≤ m1 ≤ 6, PH(

√
2) < 0

holds for every n1 ∈ N, and λ2(DNG(6, 3; 1, 1)) <
√
2, so we have family G5 =

DNG(6, 3;n1, 1) of Table 1. If n1 ≤ 2, PH(
√
2) < 0 holds for every m1 ∈ N,

and λ2(DNG(1, 3; 2, 1)) <
√
2, so we have family G6 = DNG(m1, 3; 2, 1) of

Table 1. If m1 ≥ 15 and n1 ≥ 3 we get PH(
√
2) ≥ 1, so the (finite) maximal

graphs are within those boundaries. We have:

(i.1) m1 = 7, and then PH(
√
2) = n1 − 10, so we get the graph G7 =

DNG(7, 3; 10, 1);

(i.2) m1 = 8, and then PH(
√
2) = 2n1 − 12, so we get the graph G8 =

DNG(8, 3; 6, 1);

(i.3) n1 = 4, and then PH(
√
2) = 2m1 − 20, so we get the graph G9 =

DNG(10, 3; 4, 1);

(i.4) n1 = 3, and then PH(
√
2) = m1 − 14, so we get the graph G10 =

DNG(14, 3; 3, 1).

Graphs G7–G10 of Table 1 all have λ2 =
√
2, a fact easily checked by direct

computation.

(ii) m2 = 4, n2 = 1, PH(
√
2) = 2((m1 − 4)(n1 − 1) − 2). If 3 ≤ m1 ≤ 4,

PH(
√
2) < 0 holds for every n1 ∈ N, and λ2(DNG(4, 4; 1, 1)) <

√
2, so we
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have family G11 = DNG(4, 4;n1, 1) of Table 1. If n1 = 1 PH(
√
2) < 0

holds for every m1 ∈ N, and λ2(DNG(1, 4; 1, 1)) <
√
2, so we have family

G12 = DNG(m1, 4; 1, 1) of Table 1. If m1 ≥ 7 and n1 ≥ 2 we get PH(
√
2) ≥ 1,

so the (finite) maximal graphs are within those boundaries. The remaining

cases are m1 = 5 and m1 = 6:

(ii.1) m1 = 5, and then PH(
√
2) = 2(n1 − 3), so we get the graph G13 =

DNG(5, 4; 3, 1);

(ii.2) m1 = 6, and then PH(
√
2) = 2(2n1 − 4), so we get the graph G14 =

DNG(6, 4; 2, 1).

Again, graphs G13 and G14 have λ2 =
√
2.

(iii) m2 = 5, n2 = 1, in this case, we can see that graph DNG(7, 5; 1, 1) is forbidden

for the property λ2 ≤
√
2, so we have 3 ≤ m1 ≤ 6, and the possible cases are:

(iii.1) m1 = 3, and then PH(
√
2) = −2 − n1, and λ2(DNG(3, 5; 1, 1)) <

√
2

holds, so we get the family DNG(3, 5;n1, 1), but each graph of that

family is an induced subgraph of the corresponding graph of the family

G17 = DNG(3, 6;n1, 1);

(iii.2) m1 = 4, and then PH(
√
2) = 2n1 − 4, so we get the graph G15 =

DNG(4, 5; 2, 1);

(iii.3) m1 = 5 and m1 = 6, but since n1 = 1, in both cases we get PH(
√
2) =

m1 − 6, and the resulting maximal graph is G16 = DNG(6, 5; 1, 1).

For graphs G15 and G16, λ2 =
√
2 holds.

(iv) m2 = 6, n2 = 1, now DNG(5, 6; 1, 1) is forbidden, and so 3 ≤ m1 ≤ 4. For

m1 = 3 we have PH(
√
2) = −2, and λ2(DNG(3, 6; 1, 1)) <

√
2, so we have

family G17 = DNG(3, 6;n1, 1) of Table 1, and for m1 = 4, PH(
√
2) = 4n1 − 4

giving the graph G18 = DNG(4, 6; 1, 1).

(v) m2 = 7, n2 = 1, DNG(4, 7; 1, 1) is forbidden, and the only possibility is

m1 = 3. If so, PH(
√
2) = n1 − 2 giving the graph G19 = DNG(3, 7; 2, 1).

(vi) m2 = 8, n2 = 1, again m1 ≤ 3 holds, but now DNG(3, 8; 2, 1) is forbidden, so

the only possibility is the graph G20 = DNG(3, 8; 1, 1).

For graphs G18 – G20 λ2 =
√
2 holds. Let now n2 = 2. Then m1 ≥ 2 holds

(otherwise, we get the family G2). Also, if n2 = 2 and m1 ≥ 2 holds, then m2 ≤ 4,

because DNG(2, 5; 1, 2) is forbidden for the property λ2 ≤
√
2. Three cases arise:

(i) m2 = 2, n2 = 2, PH(
√
2) = 2((m1 − 2)(n1 − 2) − 2), so if m1 ≥ 5 and

n1 ≥ 3, PH(
√
2) ≥ 1. By inspecting all the possibilities, within the given

range, we obtain one family G21 = DNG(m1, 2; 2, 2) and one maximal graph

G22 = DNG(3, 2; 4, 2) (λ2(G22) =
√
2).

(ii) m2 = 3, n2 = 2, PH(
√
2) = 2((2m1 − 3)(n1 − 1) − 1), so if m1 ≥ 3 and

n1 ≥ 2, PH(
√
2) ≥ 4. By inspecting all the possibilities within the given

frame we obtain one family G23 = DNG(m1, 3; 1, 2) and one maximal graph

G24 = DNG(2, 3; 2, 2) (λ2(G24) =
√
2).
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(iii) m2 = 4, n2 = 2, and graph DNG(3, 4; 1, 2) is forbidden, so m1 = 2 must

hold. Then we have PH(
√
2) = 4n1− 4, and this gives us one maximal graph

G25 = DNG(2, 4; 1, 2) with λ2 =
√
2.

Let now n2 = 3. The graph G4 is maximal, so either m2 = 3, or m2 = 4. The

case m2 = 4 is giving us exactly the graph G4. If we put n2 = m2 = 3 we get m1 ≤ 2

(n1 ≤ 2), and the graph DNG(2, 3; 2, 3) is forbidden, so we have one maximal graph

in this case: G26 = DNG(2, 3; 1, 3).

We have exhausted all the possibilities.

Note that each DNG with h = 1 is an induced subgraph of G1 of Table 1 (i.e., it

is not maximal for λ2 ≤
√
2). Now we proceed with h = 3.

Theorem 4.6. Let G = DNG(m1,m2,m3;n1, n2, n3) be a connected DNG satis-

fying λ2(G) ≤
√
2. Then G is an induced subgraph of one of the graphs 1-69 given in

Table 2.

Proof. Again, we compute the value of the characteristic polynomial of the divisor

H of G at λ =
√
2:

PH(
√
2) = 8− 4n1m1 − 4n1m2 − 4n1m3 − 4n3m1 − 4n2m1 − 4n2m2

+2n3m1n1m2 + 2n3m1n1m3 + 2n2m1n1m3 + 2n1m2n2m3

+2n3m2n2m1 − n3m2n2m3m1n1.

By analyzing this polynomial we determine infinite families of DNGs satisfying

λ2(G) ≤
√
2. Using them we set the boundaries for further investigation. These

families are:

(i) G1 = DNG(m1, 1, 2; 1, n2, 2), m1, n2 ∈ N, PH(
√
2) = −4

(ii) G2 = DNG(m1, 2, 1; 2, n2, 1), m1, n2 ∈ N, PH(
√
2) = −16

(iii) G3 = DNG(m1, 1, 1; 2, n2, 2), m1, n2 ∈ N, PH(
√
2) = −8

(iv) G4 = DNG(m1, 2, 2; 1, n2, 1), m1, n2 ∈ N, PH(
√
2) = −8

(v) G5 = DNG(2,m2, 1; 2, n2, 1), m2, n2 ∈ N, PH(
√
2) = −16

(vi) G6 = DNG(1,m2, 1; 1, n2, 2), m2, n2 ∈ N, PH(
√
2) = −4

(vii) G7 = DNG(2,m2, 2; 1, n2, 1), m2, n2 ∈ N, PH(
√
2) = −8

We can also set the boundaries on m3 and n3 by putting m1 = m2 = n1 = n2 = 1:

PH(
√
2) = m3n3 − 8. So, there are exactly eleven cases: n3 = 1, m3 = 1, . . . , 8

and n3 = 2, m3 = 2, 3, 4. Examination (described in the proof of Theorem 4.5) of

all possibilities in each one of these cases within the settled boundaries leads to the

maximal finite graphs (or infinite families of graphs) given in Table 2.

The next two theorems are proven in the similar way.
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Theorem 4.7. Let G = DNG(m1,m2,m3,m4;n1, n2, n3, n4) be a connected

DNG satisfying λ2(G) ≤
√
2. Then G is an induced subgraph of one of the graphs

1-77 given in Table 3.

Theorem 4.8. Let G = DNG(m1, . . . ,m5;n1, . . . , n5) be a connected DNG sat-

isfying λ2(G) ≤
√
2. Then G is an induced subgraph of one of the graphs 1− 27 given

in Table 4.

Finally, we prove the next result.

Theorem 4.9. The graph G = DNG(16; 16) is a unique DNG satisfying h = 6

and λ2(G) ≤
√
2.

Proof. By direct computation, we get λ2(G) <
√
2. Also we get that the increasing

of any of the parameters which describe G implies λ2(G) >
√
2.

Collecting the results above we arrive at the following theorem.

Theorem 4.10. Let G be an arbitrary DNG satisfying λ2(G) ≤
√
2. Then G is

an induced subgraph of one of the graphs given in Tables 1-4 or G = DNG(16; 16).

We conclude the section by an example of the previous technique applied in a

simple case. There are some ways to determine all connected DNGs with λ2 ≤ 1.

Namely, after determining all DNGs with the property λ2 ≤
√
2, one could proceed

and among them (and their subgraphs) find the ones that satisfy λ2 ≤ 1, but this

includes searching a large number of graphs and some infinite families, as well. On

the other hand, DNGs are bipartite, and the bipartite graphs satisfying λ2 ≤ 1

were characterized in 1991 by M. Petrović using the method of minimal forbidden

subgraphs (see, for example [9, p. 53-57]). But again, the determination of DNGs

with λ2 ≤ 1 using this result includes the comparison of every obtained forbidden

subgraph to the graphs having double nested structure. Here we use the same method

used for λ2 ≤
√
2. It turns out that the whole procedure and the final result are much

simpler.

Example 4.11. A connected DNG satisfying λ2(G) ≤ 1 is an induced subgraph

of one of DNGs whose parameters are:

• (∗, 1; 1, ∗), (∗, 1; ∗, 1), (1, 2; 1, 2), (22; ∗, 1), (∗, 2; 12), (3, 2; 2, 1), (2, 3; 12),
• (∗, 12; 1, ∗, 1), (1, ∗, 1; 1, ∗, 1), (22, 1; 1, ∗, 1), (2, 12; 2, 12), (1, ∗, 2; 13),
• (1, ∗, 12; 1, ∗, 12)

We get h ≤ 4 (compare Lemma 4.4).

If h = 2 we have PH(1) = 1 − m2n1 − m1n1 − m1n2 + m1n1m2n2. Putting

m1 = n2 = 1 we get PH(1) = −m1 < 0 and applying Lemma 4.3 gives the first

solution. The second solution we get by putting m2 = n2 = 1 (PH(1) = 1−m1 − n1)
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and applying Lemma 4.3. The third solution we get by direct computation. Now let

n2 = 1 and m2 ≥ 2. If so, m1 ≥ 2 must hold (otherwise, we have our first solution

for any choice of (positive) integers n1,m2). Also, if m1 ≥ 2 holds then m2 ≤ 3 must

hold (we get that condition by direct computation). Therefore, we have the following

cases depending on m2 and n2:

(i) m2 = 2, n2 = 1, PH(1) = (m1 − 2)(n1 − 1) − 1 If m1 = 2 and n1 ∈ N the

application of Lemma 4.3 gives the fourth solution. If n1 = 1 and m1 ∈ N

the application of Lemma 4.3 gives the fifth solution. The sixth solution we

get by direct checking that λ2(G) ≤ 1 holds for the graph G = DNG(3, 2; 2, 1).

If m1 > 3 and n1 ≥ 2 or m1 ≥ 3 and n1 > 2, then PH(1) > 0 holds.

(ii) m2 = 3, n2 = 1, and now graphs DNG(3, 3; 12) and DNG(2, 3; 2, 1) are for-

bidden, and for the graph G = DNG(2, 3; 12), λ2(G) ≤ 1 holds, so we have

obtained the seventh solution.

Proceeding in a similar way we consider the case h = 3 and get the five listed

solutions.

Finally, by direct computation we get that the graphs DNG(13, 2; 14), DNG(12, 2,

1; 14) and DNG(2, 13; 14) are forbidden for the property λ2(G) ≤ 1. Also, we get

PH(1) = −m2n2 − 4(m2 +n2 +2), meaning that PH(1) < 0 for any choice of positive

integers m2 and n2. Application of Lemma 4.3 gives the last solution and concludes

our consideration.

5. Appendix. The following tables contain the representations of all maximal

connected DNGs with λ2 ≤
√
2 (obtained in Theorems 4.5-4.8).

G m1 m2 n1 n2 G m1 m2 n1 n2 G m1 m2 n1 n2

1. ∗ 2 ∗ 1 10. 14 3 3 1 19. 3 7 2 1

2. ∗ 2 1 ∗ 11. ∗ 4 1 1 20. 3 8 1 1

3. ∗ 1 2 ∗ 12. 4 4 ∗ 1 21. ∗ 2 2 2

4. 1 4 1 3 13. 5 4 3 1 22. 3 2 4 2

5. 6 3 ∗ 1 14. 6 4 2 1 23. ∗ 3 1 2

6. ∗ 3 2 1 15. 4 5 2 1 24. 2 3 2 2

7. 7 3 10 1 16. 6 5 1 1 25. 2 4 1 2

8. 8 3 6 1 17. 3 6 ∗ 1 26. 2 3 1 3

9. 10 3 4 1 18. 4 6 1 1

Table 1: Maximal double nested graphs with h = 2 satisfying λ2 ≤
√
2.
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G m1 m2 m3 n1 n2 n3 G m1 m2 m3 n1 n2 n3

1. ∗ 1 2 1 ∗ 2 36. 4 4 1 2 ∗ 1

2. ∗ 2 1 2 ∗ 1 37. 3 6 1 2 ∗ 1

3. ∗ 1 1 2 ∗ 2 38. 6 3 2 1 ∗ 1

4. ∗ 2 2 1 ∗ 1 39. 4 4 2 1 ∗ 1

5. 2 ∗ 1 2 ∗ 1 40. 3 6 2 1 ∗ 1

6. 1 ∗ 2 1 ∗ 2 41. 1 2 2 3 2 1

7. 2 ∗ 2 1 ∗ 1 42. 1 1 2 4 2 1

8. 6 1 1 ∗ 1 1 43. 6 1 2 2 1 1

9. 7 1 1 38 1 1 44. 4 2 2 2 1 1

10. 8 1 1 22 1 1 45. 3 2 2 3 1 1

11. 9 1 1 16 1 1 46. 3 4 2 2 1 1

12. 10 1 1 14 1 1 47. 1 4 3 ∗ 1 1

13. 11 1 1 12 1 1 48. 1 12 3 3 1 1

14. 4 2 1 ∗ 1 1 49. 1 8 3 4 1 1

15. 5 2 1 10 1 1 50. 1 6 3 7 1 1

16. 6 2 1 6 1 1 51. 1 5 3 10 1 1

17. 8 2 1 4 1 1 52. 2 ∗ 3 2 1 1

18. 12 2 1 3 1 1 53. 3 4 3 1 1 1

19. 4 3 1 6 1 1 54. 4 2 3 1 1 1

20. 3 4 1 ∗ 1 1 55. 6 1 3 1 1 1

21. 3 5 1 6 1 1 56. 2 ∗ 3 1 2 1

22. 3 2 1 10 2 1 57. 1 4 4 2 1 1

23. 4 2 1 6 2 1 58. 1 3 4 3 1 1

24. 3 3 1 8 2 1 59. 1 2 4 ∗ 1 1

25. 4 3 1 4 2 1 60. 2 ∗ 4 1 1 1

26. 3 4 1 6 2 1 61. 1 4 5 1 1 1

27. 3 5 1 4 2 1 62. 1 1 6 ∗ 1 1

28. 3 4 1 4 3 1 63. 1 2 6 2 1 1

29. 3 5 1 3 4 1 64. 1 1 7 2 1 1

30. 7 3 1 1 8 1 65. 1 1 8 1 1 1

31. 8 3 1 1 4 1 66. 2 2 2 1 ∗ 2

32. 10 3 1 1 2 1 67. 1 ∗ 3 1 2 2

33. 14 3 1 1 1 1 68. 1 ∗ 3 2 1 2

34. 5 4 1 1 1 1 69. 1 ∗ 4 1 1 2

35. 6 3 1 2 ∗ 1

Table 2: Maximal double nested graphs with h = 3 satisfying λ2 ≤
√
2.
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198 M. And̄elić, T. Koledin, Z. Stanić

G m1 m2 m3 m4 n1 n2 n3 n4

1. 2 ∗ 2 1 2 ∗ 1 1

2. 2 ∗ 2 2 1 ∗ 1 1

3. 2 ∗ 1 2 1 ∗ 2 1

4. 1 ∗ 2 2 1 ∗ 1 2

5. ∗ 1 1 1 1 4 1 1

6. ∗ 1 1 1 1 1 4 1

7. ∗ 1 1 1 1 2 2 1

8. 4 2 1 1 1 ∗ 1 1

9. 5 2 1 1 1 8 1 1

10. 6 2 1 1 1 4 1 1

11. 8 2 1 1 1 2 1 1

12. 12 2 1 1 1 1 1 1

13. 4 3 1 1 1 4 1 1

14. 3 4 1 1 1 ∗ 1 1

15. 3 5 1 1 1 4 1 1

16. 7 1 1 1 1 36 1 1

17. 8 1 1 1 1 20 1 1

18. 9 1 1 1 1 13 1 1

19. 10 1 1 1 1 12 1 1

20. 11 1 1 1 1 10 1 1

21. 12 1 1 1 1 9 1 1

22. 14 1 1 1 1 8 1 1

23. 16 1 1 1 1 7 1 1

24. 22 1 1 1 1 6 1 1

25. 38 1 1 1 1 5 1 1

26. 3 4 1 1 2 ∗ 1 1

27. 4 2 1 1 2 ∗ 1 1

28. 6 1 1 1 2 ∗ 1 1

29. 3 1 1 1 3 1 1 1

30. 3 2 2 1 1 1 1 1

31. 1 2 2 1 ∗ 1 1 1

32. 1 3 2 1 10 1 1 1

33. 1 4 2 1 6 1 1 1

34. 1 6 2 1 4 1 1 1

35. 1 10 2 1 3 1 1 1

36. 1 1 2 1 10 2 1 1

37. 1 2 2 1 3 5 1 1

38. 1 4 2 1 3 4 1 1

39. 1 6 2 1 3 3 1 1
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40. 1 8 2 1 3 2 1 1

41. 1 4 2 1 4 2 1 1

42. 1 2 2 1 4 3 1 1

43. 1 2 2 1 6 2 1 1

44. 1 12 3 1 1 1 1 1

45. 1 4 3 1 2 1 1 1

46. 1 2 3 1 6 1 1 1

47. 1 1 3 1 8 2 1 1

48. 1 5 3 1 1 8 1 1

49. 1 6 3 1 1 4 1 1

50. 1 8 3 1 1 2 1 1

51. 1 4 3 1 2 ∗ 1 1

52. 1 2 3 1 3 4 1 1

53. 1 2 3 1 4 2 1 1

54. 1 3 4 1 1 1 1 1

55. 1 2 4 1 2 1 1 1

56. 1 1 4 1 3 5 1 1

57. 1 1 4 1 4 3 1 1

58. 1 1 4 1 6 2 1 1

59. 1 2 4 1 2 ∗ 1 1

60. 1 1 5 1 3 4 1 1

61. 1 1 5 1 4 2 1 1

62. 1 1 6 1 2 ∗ 1 1

63. 1 2 2 1 1 2 2 1

64. 6 1 1 2 1 ∗ 1 1

65. 4 2 1 2 1 ∗ 1 1

66. 3 4 1 2 1 ∗ 1 1

67. 1 4 1 2 2 1 1 1

68. 1 1 2 1 3 1 1 1

69. 1 2 2 2 2 1 1 1

70. 1 1 2 2 3 1 1 1

71. 1 4 3 2 1 ∗ 1 1

72. 1 2 4 2 1 ∗ 1 1

73. 1 1 4 2 2 1 1 1

74. 1 1 6 2 1 ∗ 1 1

75. 1 1 4 3 1 1 1 1

76. 1 2 2 3 1 1 1 1

77. 1 4 1 3 1 1 1 1

Table 3: Maximal double nested graphs with h = 4 satisfying λ2 ≤
√
2.
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200 M. And̄elić, T. Koledin, Z. Stanić

G m1 m2 m3 m4 m5 n1 n2 n3 n4 n5

1. 1 36 1 1 1 1 5 1 1 1

2. 1 20 1 1 1 1 6 1 1 1

3. 1 14 1 1 1 1 7 1 1 1

4. 1 12 1 1 1 1 8 1 1 1

5. 1 10 1 1 1 1 9 1 1 17

6. 2 ∗ 1 1 1 1 4 1 1 1

7. 3 1 1 1 1 1 1 1 1 1

8. 1 2 2 1 1 2 ∗ 1 1 1

9. 1 3 2 1 1 1 8 1 1 1

10. 1 4 2 1 1 1 4 1 1 1

11. 1 6 2 1 1 1 2 1 1 1

12. 1 8 2 1 1 1 1 1 1 1

13. 1 2 3 1 1 1 4 1 1 1

14. 1 1 4 1 1 2 ∗ 1 1 1

15. 1 1 5 1 1 1 4 1 1 1

16. 1 8 2 1 1 1 1 2 1 1

17. 1 4 2 1 1 1 2 2 1 1

18. 1 2 3 1 1 1 2 2 1 1

19. 1 1 3 1 1 1 6 2 1 1

20. 1 1 4 1 1 1 4 2 1 1

21. 1 1 5 1 1 1 2 2 1 1

22. 1 2 4 1 1 1 1 3 1 1

23. 1 1 5 1 1 1 1 4 1 1

24. 1 1 2 2 1 1 1 1 1 1

25. 1 4 1 1 2 1 ∗ 1 1 1

26. 1 2 2 1 2 1 ∗ 1 1 1

27. 1 1 4 1 2 1 ∗ 1 1 1

Table 4: Maximal double nested graphs with h = 5 satisfying λ2 ≤
√
2.
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