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Abstract

We prove that
µ1 ≤ max

{√
2
(
d2i + dimi − 2T+

i

)
: 1 ≤ i ≤ n

}
,

where µ1 is the Laplacian index of a signed graph Ġ with n vertices and, for a vertex i, the symbols di,mi and T+
i denote its

degree, average 2-degree and the number of positive triangles containing i, respectively. We also show that equality holds
if and only if Ġ is switching equivalent to a regular signed graph with all edges being negative. Apart from this result,
we derive some other upper bounds for µ1, make some comparisons and conclude by finding a lower bound for the same
eigenvalue.
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1. Introduction

A signed graph Ġ is a pair (G, σ), where G = (V,E) is an unsigned graph, called the underlying graph, and σ : E −→
{+1,−1} is the sign function. The edge set of a signed graph is composed of subsets of positive and negative edges. We
denote the number of vertices of a signed graph by n.

The n× n adjacency matrix AĠ of Ġ is obtained from the standard (0, 1)-adjacency matrix of G by reversing the sign of
all 1s which correspond to negative edges. If DĠ is the diagonal matrix of vertex degrees, then the Laplacian matrix of Ġ
is defined as LĠ = DĠ − AĠ. The eigenvalues of LĠ are real and non-negative, and they form the Laplacian spectrum of
Ġ. The largest eigenvalue of LĠ is called the Laplacian index and denoted by µ1.

Spectra of standard matrices associated with signed graphs have received a great deal of attention in the recent past.
It occurs that, as in the particular case of graphs, the largest eigenvalue is the most investigated one. It gives information
about the structure and has applications in various fields. Some details can be found in [5,7,8]. For some recently obtained
upper bounds, we refer the reader to [3,4].

Section 2 contains some definitions, additional terminology and notation. Our contribution is reported in Section 3.
The main result is the sharp upper bound given at the beginning of that section. It is followed by some other bounds and
their comparisons.

2. Preparatory

For U a subset of the vertex set, let ĠU be the signed graph obtained from Ġ by reversing the sign of each edge between
a vertex in U and a vertex in V (Ġ) \ U . The signed graph ĠU is said to be switching equivalent to Ġ. The switching
equivalence is an equivalence relation and switching equivalent signed graphs share the same Laplacian spectrum.

We denote by di the degree of a vertex i ∈ V (Ġ). We also write d+i and d−i for the positive and negative vertex degree
(i.e., the number of positive and negative edges incident with i). If the vertices i and j are adjacent, then we write i ∼ j.
The existence of a positive (resp. negative) edge between these vertices is designated by i +∼ j (i −∼ j). For di > 0, we denote

m+
i =

1

di

(∑
j
+∼i

d+j +
∑
j
−∼i

d−j

)
, m−

i =
1

di

(∑
j
+∼i

d−j +
∑
j
−∼i

d+j

)
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and mi = m+
i +m−

i ; the last parameter is known as the average 2-degree, that is the average degree of the neighbours of i.
For di = 0, we define all these parameters to be zero.

For the vertices i and j, we use cij to denote the number of their common neighbours (i.e., joined to both of them by
any edge), c+ij for the number of common neighbours joined to i by a positive edge and to j by any edge, and c++

ij for the
number of common neighbours that are joined to both of them by a positive edge. We also use the similar notation for all
the remaining possibilities.

A cycle in Ġ is said to be positive if the number of its negative edges is even. Otherwise, it is called negative. In
particular, the number of positive triangles that contain a fixed vertex i is denoted by T+

i .
If x = (x1, x2, . . . , xn)

ᵀ is an eigenvector associated with the Laplacian eigenvalue µ, then from LĠx = µx, we get the
eigenvalue equation (for µ):

µxi = dixi −
∑
u∼i

σ(ui)xu. (1)

Since every graph can be interpreted as a signed graph with all the edges being positive, all notions defined in this
section are automatically defined for graphs. Observe that the standard Laplacian matrix of a graph G coincides with the
Laplacian matrix of the same graph where it is interpreted as a signed graph. The standard signless Laplacian matrix of
G coincides with the Laplacian matrix of the signed graph obtained by reversing the sign of all the edges of G.

3. Results

Our main contribution reads as follows.

Theorem 3.1. For the Laplacian index µ1 of a signed graph Ġ with n vertices,

µ1 ≤ max
{√

2
(
d2i + dimi − 2T+

i

)
: 1 ≤ i ≤ n

}
, (2)

where, for a vertex i, di,mi and T+
i denote its degree, average 2-degree and the number of positive triangles containing i,

respectively.
Equality holds if and only if Ġ is switching equivalent to a regular signed graph with all edges being negative.

Proof. Let x be an eigenvector associated with µ1, and let xi be the maximum absolute value of the coordinates of x.
Without loss of generality, we may assume that xi = 1. Using the eigenvalue equation (1), we get

µ1 = di −
∑
u∼i

σ(ui)xu = di −
∑
u

+∼i
u�j

xu −
∑
u

+∼i

u
+∼j

xu −
∑
u

+∼i

u
−∼j

xu +
∑
u

−∼i
u�j

xu +
∑
u

−∼i

u
+∼j

xu +
∑
u

−∼i

u
−∼j

xu. (3)

Similarly, for an arbitrary neighbour of i, say j, we have

µ1xj = djxj −
∑
u∼j

σ(uj)xu = djxj −
∑
u

+∼j
u�i

xu −
∑
u

+∼j

u
+∼i

xu −
∑
u

+∼j

u
−∼i

xu +
∑
u

−∼j
u�i

xu +
∑
u

−∼j

u
+∼i

xu +
∑
u

−∼j

u
−∼i

xu. (4)

By adding (4) to (3), we get

µ1(1 + xj) = di + djxj −
∑
u

+∼i
u�j

xu − 2
∑
u

+∼i

u
+∼j

xu +
∑
u

−∼i
u�j

xu + 2
∑
u

−∼i

u
−∼j

xu −
∑
u

+∼j
u�i

xu +
∑
u

−∼j
u�i

xu.

This implies
µ1(1 + xj) ≤ di + dj + d+i − c

+
ij + 2c++

ij + d−i − c
−
ij + 2c−−

ij + d+j − c
+
ji + d−j − c

−
ji

= 2di + 2dj − 2cij + 2c++
ij + 2c−−

ij = 2di + 2dj − 2c+−
ij − 2c−+

ij .
(5)

Taking the summation over all j such that j −∼ i, we get

µ1

(
d−i +

∑
j
−∼i

xj

)
≤ 2did

−
i + 2

∑
j
−∼i

dj − 2
∑
j
−∼i

T+
ij . (6)

Acting in a similar way, by subtracting (4) from (3), we get

µ1(1− xj) = di − djxj −
∑
u

+∼i
u�j

xu − 2
∑
u

+∼i

u
−∼j

xu +
∑
u

−∼i
u�j

xu + 2
∑
u

−∼i

u
+∼j

xu +
∑
u

+∼j
u�i

xu −
∑
u

−∼j
u�i

xu,
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which gives
µ1(1− xj) ≤ di + dj + d+i − c

+
ij + 2c+−

ij + d−i − c
−
ij + 2c−+

ij + d+j − c
+
ji + d−j − c

−
ji

= 2di + 2dj − 2cij + 2c+−
ij + 2c−+

ij = 2di + 2dj − 2c++
ij − 2c−−

ij .
(7)

Taking the summation over all j such that j +∼ i, we get

µ1

(
d+i −

∑
j
+∼i

xj

)
≤ 2did

+
i + 2

∑
j
+∼i

dj − 2
∑
j
+∼i

T+
ij . (8)

By taking the sum of (6) and (8), we get

µ1

(
di −

∑
j∼i

σ(ij)xj

)
≤ 2d2i + 2

∑
j∼i

dj − 2
∑
j∼i

T+
ij .

By using the eigenvalue equation once again, we arrive at

µ2
1 ≤ 2d2i + 2

∑
j∼i

dj − 2
∑
j∼i

T+
ij ,

i.e.,
µ1 ≤

√
2d2i + 2dimi − 4T+

i .

Finally, taking the maximum over all vertices, we obtain (2).
If equality in (2) holds, then we have equality in (5) and (7). Considering both, we get

xj = 1 if i −∼ j,
xj = −1 if i +∼ j

and xu = 1 if u −∼ j,
xu = −1 if u +∼ j.

(9)

In other words, the coordinates of x are equal in absolute value and if two vertices are adjacent by a negative edge then
the corresponding coordinates are equal, while if two vertices are adjacent by a positive edge then the corresponding
coordinates differ in sign. Since xi = 1, it follows by (9) that every pair of vertices adjacent by a negative edge correspond
to 1 in x. By making a switch with respect to all the vertices which correspond to −1 in x, we arrive at the signed graph,
say Ḣ, with all the edges being negative. Simultaneously, x is transformed to the all-1 eigenvector j which corresponds to
the Laplacian index of Ḣ. Since LḢ is, in fact, the signless Laplacian matrix of the underlying graph H, we conclude that
Ḣ must be regular (as j corresponds to its largest eigenvalue – see [6, p. 23]).

Conversely, if Ġ is switching equivalent to the regular signed graph (of vertex degree r) with all the edges being negative,
then (2) reduces to µ1 ≤

√
4r2 = 2r (since T+

i = 0, for all i). Moreover, the signless Laplacian index of a regular graph is
equal to 2r, and we are done.

Figure 1: The signed graph for Example 3.1. Negative edges are dashed.

A similar proof technique in case of unsigned graphs can be found in Das’s [1]. Our proof differs since it concerns signed
graphs, has a more complicated computation which in particular contains a part that results in inequality (6) and, possibly
the most important, resolves the case of equality. Here is an example.

Example 3.1. Consider the signed graph illustrated in Figure 1. Its Laplacian index is equal to 6. Since every vertex belongs
to exactly two positive triangles, the upper bound of (2) is equal to 2

√
14 ≈ 7.48. By taking all the edges to be positive, we

obtain the signed graph whose Laplacian index is also equal to 6, but now the upper bound gives a better estimate since
every vertex belongs to exactly 4 positive triangles; it is 4

√
3 ≈ 6.93. Of course, by taking all the edges to be negative, we get

the equality in (2); both sides are equal to 8.
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Consider now the particular case of graphs. For the Laplacian index, the bound (2) remains unchanged, since every
triangle of a graph is positive.

For the signeless Laplacian index κ1, the upper bound (2) reduces to

κ1 ≤ max
{√

2di
(
di +mi

)
: 1 ≤ i ≤ n

}
, (10)

since the corresponding graph is interpreted as a signed graph with all edges being negative. The bound (10) is known
and can be found in [5, p. 207]. The same bound is derived for the Laplacian index in [2]; evidently, our bound (2) (used for
the Laplacian index of a graph) improves this result.

From (1), we get κxi = dixi +
∑

u∼i xu (the eigenvalue equation for the signless Laplacian). Acting as in the proof of
Theorem 3.1, if xi = 1 is the maximum absolute value of the coordinates of x and j is a neighbour of i, we get

κ1(1 + xj) = κ1 + djxj +
∑
u∼j

xu,

which yields
κ1(1 + xj) ≤ κ1 + 2dj , (11)

Taking the summation over all neighbours of i, we arrive at

κ21 ≤ κ1di + 2dimi.

Hence,

κ1 ≤
di +

√
d2i + 8dimi

2
,

along with equality if and only ifG is regular, which follows easily by considering the equality in (11). The latter inequality
can be found in [5, p. 207], along with a different proof. By [3], for signed graphs with the same underlying graph, the
maximum index is attained in the case of that with all edges being negative, up to a switching. In other words, every upper
bound for κ1 of G is simultaneously an upper bound for µ1 of Ġ = (G, σ). Thus, we have

µ1 ≤
di +

√
d2i + 8dimi

2
. (12)

Comparing the bounds (2) and (12), we easily obtain that the former one gives a better estimate whenever

T+
i ≥

1

8
di
(
3di −

√
di(di + 8mi)

)
.

This, in particular, occurs whenever the right-hand side of the last inequality is negative.
We conclude by a lower bound for µ1. We say that a signed graph is net-regular if the difference between positive and

the negative degree is constant on the vertex set. Such a signed graph does not need to be regular, but if it is, then we
may write r+ and r− for the positive and negative vertex degree, along with r = r+ + r−. Observe that, in this case, 2r−

appears as a Laplacian eigenvalue associated with a constant eigenvector.

Theorem 3.2. For the Laplacian index µ1 of a signed graph Ġ with n vertices,

µ1 ≥

∑n
i=1 di

(
d2i +

∑
j
−∼i
dj −

∑
j
+∼i
dj

)
∑n

i=1 d
2
i

, (13)

where di denotes the degree of i.
Equality holds if Ġ is switching equivalent to a regular and net-regular signed graph with 2r− in the role of the Laplacian

index.

Proof. For LĠ = (li,j) and d = (d1, d2, . . . , dn)
ᵀ, using the Rayleigh principle, we get

µ1 ≥
dᵀLĠd
dᵀd =

∑n
i=1

∑n
j=1 dili,jdj∑n
i=1 d

2
i

=

∑n
i=1

(
d3i −

∑
j∼i σ(ij)didj

)∑n
i=1 d

2
i

,

which leads to (13).
If Ġ is switching equivalent to a regular (of degree r) and net-regular signed graph, then we have

µ1 ≥
nr
(
r2 + r−r − r+r

)
nr2

= r + r− − r+ = 2r−.

By the assumption, we have µ1 = 2r−, and the result follows.
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