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Abstract

We consider the problem of determining the Q–integral graphs,
i.e. the graphs with integral signless Laplacian spectrum. First, we
determine some infinite series of such graphs having the other two
spectra (the usual one and the Laplacian) integral. We also com-
pletely determine all (2, s)–semiregular bipartite graphs with integral
signless Laplacian spectrum. Finally, we give some results concerning
(3, 4) and (3, 5)–semiregular bipartite graphs with the same property.

1 Introduction

Let G be a graph with adjacency matrix A (= AG). The eigenvalues and
the spectrum of A are also called the eigenvalues and the spectrum of G,
respectively. A graph whose spectrum consists entirely of integers is called
an integral graph. If we consider a matrix L = D − A instead of A, where
D is the diagonal matrix of vertex–degrees (in G), we get the Laplacian
eigenvalues and the Laplacian spectrum, while in the case of matrix Q =
D +A we get the signless Laplacian eigenvalues and the signless Laplacian
spectrum, respectively. For short, the signless Laplacian eigenvalues and the
signless Laplacian spectrum will be called the Q–eigenvalues and the Q–
spectrum, respectively. A graph whose Laplacian (resp. signless Laplacian)
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spectrum consists entirely of integers is called an L–integral (resp. Q–
integral) graph. Also, we say that a graph is ALQ–integral if it has all
three mentioned spectra integral.

Let R (= RG) be the n×m vertex–edge incidence matrix of G. Denote
by L(G) the line graph of G (recall, vertices of L(G) are in one–to–one
correspondence with edges of G, and two vertices in L(G) are adjacent
if and only if the corresponding edges in G are adjacent). The following
relations are well known (see, for example, [2]):

RRT = AG + D, RT R = AL(G) + 2I,

From these relations it immediately follows that

PL(G)(λ) = (λ + 2)m−nQG(λ + 2), (1)

where QG(λ) = det(λI −Q) is the characteristic polynomial of the matrix
Q.

The integral and L–integral graphs are well studied in the literature. On
the other hand, the graphs with integral Q–spectrum are studied in exactly
two papers [9] and [10], so far. Since the matrix Q is positive semidefinite,
the Q–spectrum consists of non–negative values. Furthermore, the least
eigenvalue of the signless Laplacian of a connected graph is equal to 0 if
and only if the graph is bipartite; in this case 0 is a simple eigenvalue (see
[2], Proposition 2.1).

Recall that if G is a regular graph which is integral in the sense of any
of spectra mentioned above, then it has integral the other two spectra (cf.
[2], Section 3), as well. In particular, the complete graphs form an infinite
series of graphs having all three spectra integral. Also, if G is a bipartite
graph then its L–spectrum and Q–spectrum coincide (the proof can be
found in many places, see [4], for example), and therefore every bipartite
graph is L–integral if and only if it is Q–integral.

In Section 2, we mention some results from the literature in order to
make the paper more self–contained. In Section 3, we identify some infinite
series of ALQ–integral graphs. All (2, s)– semiregular bipartite Q–integral
graphs are determined in Section 4. Some possible Q–spectra of connected
Q–integral (3, 4)–semiregular bipartite graphs obtained in [9] are considered
in Section 5. In addition, we give the possible Q–spectra of connected Q–
integral (3, 5)–semiregular bipartite graphs and consider some of them.

2 Preliminaries

Recall that for an arbitrary edge of a graph G, the edge–degree is the number
of edges adjacent to it. Also, we say that G is edge–regular if its edges have
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the same edge–degree. Further, an (r, s)–semiregular bipartite graph is a
bipartite graph whose each vertex in the first (resp. second) colour class
has degree r (resp. s).

Following [9] and [10], we list some results regarding Q–integral graphs.
All Q–integral graphs with maximum edge–degree at most 4 are known;
exactly 26 of them are connected. Also, all (r, s)–semiregular bipartite
graphs with r + s = 7 and r < 3 < s are known (note, an edge–regular
graph with edge degree 5 is in fact an (r, s)–semiregular bipartite graph
with r + s = 7); exactly 3 of them are connected. In addition, all possible
Q–spectra of connected (3, 4)–semiregular bipartite graphs are determined,
and all graphs having some of those Q–spectra are identified. The remain-
ing unsolved cases are given in Table 1 (a complete table which contains
all 16 possible spectra can be found in [9]): each row contains the number
of vertices (n), the number of edges (m), the multiplicities of eigenvalues
0, 1, ..., 7, the number of quadrangles (q) and the number of hexagons (h).
Finally, all Q–integral graphs up to 10 vertices are known; exactly 172 of
them are connected.

n m 0 1 2 3 4 5 6 7 q h
21 36 1 4 0 7 4 0 4 1 18 0
21 36 1 3 3 5 2 3 3 1 12 28
21 36 1 2 6 3 0 6 2 1 6 56
28 48 1 4 6 5 1 6 4 1 6 44
28 48 1 5 3 7 3 3 5 1 12 16
35 60 1 6 6 7 2 6 6 1 6 32
35 60 1 7 3 9 4 3 7 1 12 4
42 72 1 8 6 9 3 6 8 1 6 20
49 84 1 10 6 11 4 6 10 1 6 8

Table 1

Now we list some notions and results to be used later on (see [2], Section
4; especially Theorem 4.1 and Corollaries 4.2 and 4.3). A semi–edge walk (of
length k) in a graph G is an alternating sequence v1, e1, v2, e2, ..., vk, ek, vk+1

of vertices v1, v2, ..., vk+1 and edges e1, e2, ..., ek such that for any i =
1, 2, ..., k the vertices vi and vi+1 are end–vertices (not necessarily distinct)
of the edge ei. Let Q be the signless Laplacian of a graph G. Then the (i, j)–
entry of the matrix Qk is equal to the number of semi–edge walks starting
at vertex i and terminating at vertex j. Let Tk =

∑n
i=1 µk

i (k = 0, 1, ...) be
the k–th spectral moment for the Q–spectrum (here µ1, µ2, . . . , µn are the
Q–eigenvalues of G). Then Tk is equal to the number of closed semi–edge
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walks of length k. In particular, if G has n vertices, m edges, t triangles,
and vertex–degrees d1, d2, . . . , dn, then

T0 = n, T1 =
n∑

i=1

di = 2m, T2 = 2m+
n∑

i=1

d2
i , T3 = 6t+3

n∑

i=1

d2
i +

n∑

i=1

d3
i .

Finally, if G is an (r, s)–semiregular bipartite graph which contains q
quadrangles and h hexagons then for the spectral moments Tk (k = 4, 5, 6)
we have (cf. [9], Lemma 3.2)

T4 =
(
r3 + s3 + 4(r2 + s2) + 2(r + s) + 4rs− 2

)
m + 8q,

T5 =
(
r4 + 5(r3 + r2 − r) + s4 + 5(s3 + s2 − s) + 5rs(r + s + 2)

)
m+

20(r + s)q,

T6 =
(
r5 + s5 + 6(r4 + s4) + 9(r3 + s3)− 7(r2 + s2)− 6(r + s + rs)+

6rs(r2 + s2 + rs) + 21(r2s + s2r) + 4
)
m + 12

(
3(r2 + s2)+

2(r + s) + 4rs− 4
)
q + 12h.

3 Some infinite series of ALQ–integral graphs

The problem of determining the connected non–regular graphs that are
integral, Laplacian integral and signless Laplacian integral was set in [11]
(see Problem C). The determination of infinite series of such graphs also
merits attention. An example is a series of complete bipartite graphs Km,n

such that mn is a perfect square (see [10], Lemma 2). Furthermore, fol-
lowing the same paper we learn that exactly 42 connected graphs up to 10
vertices have all three spectra integral, while 40 of them are either regular
or complete bipartite or both. The remaining two graphs are K2 + K1,4

and K2∇4K2 (see Fig. 1). Here, + stands for the sum of two graphs, while
∇ denotes the join of two graphs; recall, the join (or the complete product)
of two graphs is the graph obtained by joining every vertex of the first
graph with every vertex of the second graph. These are connected graphs
of smallest order (which are neither regular nor complete bipartite) being
integral in the sense of all three spectra, and we shall generalize this result.
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Fig. 1

First we prove the following theorem.

Theorem 3.1 If G1 + G2 is a bipartite graph, where both G1 and G2 are
integral and L–integral then G1 + G2 is ALQ–integral.

Proof If λ
(1)
1 , ..., λ

(1)
n1 and λ

(2)
1 , ..., λ

(2)
n2 are the eigenvalues (resp. the Lapla-

cian eigenvalues) of G1 and G2 then the eigenvalues (resp. the Laplacian
eigenvalues) of G1 + G2 are λ

(1)
i ± λ

(2)
j , (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) (see [1],

p. 70, and [8], p. 150). In addition, we have that for bipartite graphs
Laplacian and signless Laplacian spectra coincide (see Section 1). Hence,
the graph G1 + G2 has all three spectra integral.

This completes the proof. ¤

Corollary 3.1 The graph Km1,n1 + Km2,n2 is ALQ–integral if both m1n1

and m2n2 are the perfect squares. Consequently, the graph K2 + K1,n is
ALQ–integral whenever n is a perfect square.

Proof The proof follows from the previous theorem and the mentioned fact
that a complete bipartite graph Km,n is ALQ–integral if and only if mn is
a perfect square. ¤

In what follows we construct another infinite series of ALQ–integral
graphs.

Lemma 3.1 The graph K2∇nK2 is integral if and only if n is a perfect
square. The same graph is L–integral for each n.

Proof The lemma is obviously true for n = 0. Assume now, n ≥ 1.
By using the formula for the characteristic polynomial of a join of two
graphs (compare [1], Theorem 2.8) we get that K2∇nK2 has the following
spectrum: {(−1)n+1, 1n−1, ± 2

√
n + 1}. (In the exponential notation
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the exponents stand for the multiplicities of the eigenvalues.) Similarly, by
using the formula for the Laplacian characteristic polynomial of a join of
two graphs (see [1], p. 58) we get that K2∇nK2 has the following Laplacian
spectrum: {0, 2n−1, 4n, (2n + 2)2}, and the proof follows. ¤

Before we consider the Q–spectrum of K2∇nK2 we prove the next (gen-
eral) result. Recall that if G is an arbitrary (simple) graph and u its
vertex then open and closed neighbourhoods of u are {v | v ∼ u} and
{v | v ∼ u} ∪ {u}, respectively. We say that two vertices are duplicate
(coduplicate) if their open (resp. closed) neighbourhoods are the same.

Lemma 3.2 Any collection of k mutually duplicate (resp. coduplicate) ver-
tices of degree d in a simple graph G gives k − 1 Q–eigenvalues of G all
equal to d (resp. d− 1).

Proof Any pair of duplicate (resp. coduplicate) vertices u, v gives rise to
a signless Laplacian eigenvector of G for d (resp. d− 1) defined as follows:
all its entries are zero except those corresponding to u and v which can be
taken to be 1 and −1, or vice versa. Thus any collection with k mutually
duplicate (resp. coduplicate) vertices gives rise to k−1 linearly independent
Q–eigenvectors for d (resp. d− 1).

The proof is complete. ¤

Lemma 3.3 The Q–spectrum of a graph K2∇nK2 (n ≥ 1) consists of the
following eigenvalues: 2n+1, 4n−1, 2n and 2n + 4.

Proof First, there are two coduplicate vertices of degree 2n + 1, and there
are n pairs of mutually coduplicate vertices of degree 3. By the previous
lemma, we deduce that the Q–spectrum of our graph contains the eigen-
value 2n as well as the eigenvalue 2 with the multiplicity at least n. The
next n eigenvalues we get by constructing the corresponding eigenvectors.
The matrix Q = A + D has the form:

Q =




2n + 1 1 1 1 1 1 . . . 1 1
1 2n + 1 1 1 1 1 . . . 1 1
1 1 3 1 0 0 . . . 0 0
1 1 1 3 0 0 . . . 0 0
1 1 0 0 3 1 . . . 0 0
1 1 0 0 1 3 . . . 0 0
...

. . .
...

1 1 0 0 0 0 . . . 3 1
1 1 0 0 0 0 . . . 1 3




.
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Now, it is a mater of routine to check that the eigenvector x1 = (n, n, 1, 1,
. . . , 1)T corresponds to eigenvalue 2n + 4, while the following n − 1 lin-
early independent eigenvectors x2 = (0, 0,−1,−1, 1, 1, 0, 0, . . . , 0)T , x3 =
(0, 0,−1,−1,−1,−1, 2, 2, 0, 0, . . . , 0)T , . . . and xn = (0, 0,−1,−1, . . . ,−1,
−1, n− 1, n− 1)T correspond to eigenvalue 4.

So far, we have 2n− 1 eigenvalues of Q. By summing them we get 10n.
On the other hand, the trace of Q is equal to 10n + 2, and therefore the
remaining eigenvalue is equal to 2.

The proof is complete. ¤
Collecting the results above we get the following theorem.

Theorem 3.2 The graph K2∇nK2 is ALQ–integral if and only if n is a
perfect square.

4 Q–integral (2, s)–semiregular bipartite
graphs

It is known that each complete bipartite graph is Q–integral (see [10],
Lemma 1), and consequently, a (2, s)–semiregular complete bipartite graph
is Q–integral for every non–negative integer s.

Denote by S(G) the subdivision of a graph G; recall, the subdivision of
a graph G is obtained by inserting into each of its edges a vertex of degree
2 (see also [1], p. 16). Now we prove the following lemma.

Lemma 4.1 Each (2, s)–semiregular bipartite graph G is a subdivision of
some s–regular multigraph1 G′. In addition, G does not contain any quad-
rangle as an induced subgraph if and only if G′ is a graph.

Proof Take any (2, s)–semiregular bipartite graph G. If we replace each
path of the length 2 between the vertices of degree s by a single edge we
get the corresponding multigraph.

Now, if G does not contain any quadrangle as an induced subgraph
then there are no two different paths of the length 2 between two vertices
of degree s (in G). Thus, G′ has no multiple edges. Finally, the subdivision
of a regular graph of degree s is a (2, s)–semiregular bipartite graph having
no vertices with the same open neighbourhood and so it does not contain
any quadrangle as an induced subgraph.

The proof is complete. ¤
Before we proceed to the next theorem, we emphasize the following

formulas and make one remark.
1In this paper, the multigraph is considered to be a graph with multiple edges, but

no loops.
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If G is a semiregular bipartite graph with n1 and n2 (n1 ≥ n2) vertices
in each colour class, then the relation

PL(G)(λ) = (λ− r1 + 2)n1−n2(λ + 2)n1r1−n1−n2 ·
n2∏

i=1

(
(λ− r1 + 2)(λ− r2 + 2)− λ2

i

)
(2)

holds (compare [3], Proposition 1.2.8), where λ1, λ2, . . . , λn2 are the first
n2 largest eigenvalues of G, while each vertex of the first (resp. second)
colour class has degree r1 (resp. r2).

Let G be a regular graph of degree s, having n vertices and m edges,
then we have the relation (see [1], Theorem 2.17)

PS(G)(λ) = λm−nPG(λ2 − s). (3)

Remark 4.1 Observe that both relations (2) and (3) hold even G is a
regular multigraph. The proofs of the corresponding statements remain un-
changed.

Theorem 4.1 Let G be a connected regular multigraph of degree s having
n vertices and m edges (m ≥ n). If G has the spectrum Sp(G) = {λ1 =
s, λ2, . . . , λn}, then the Q–spectrum of S(G) is

{
2m−n,

s + 2±
√

s2 + 4(λ1 + 1)
2

,
s + 2±

√
s2 + 4(λ2 + 1)
2

, . . . ,

s + 2±
√

s2 + 4(λn + 1)
2

}
. (4)

Proof Regarding Lemma 4.1, we have that S(G) is a (2, s)–semiregular
bipartite graph. In addition, it has m vertices of degree 2 and n vertices of
degree s. Due to relation (3), we get that S(G) has the following spectrum

Sp(S(G)) = {0m−n,±
√

λ1 + s,±
√

λ2 + s, . . . ,±
√

λn + s}. (5)

By putting r1 = 2, r2 = s, n1 = m,n2 = n and λi =
√

λi + s into (2), we
get

PL(S(G))(λ) = λm−n(λ + 2)m+n ·
n∏

i=1

(λ(λ− s + 2)− (λi + s)) .
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Finally, due to relation (1), we get

QS(G)(λ) = (λ− 2)m−n ·
n∏

i=1

((λ− 2)(λ− s)− (λi + s)) .

This completes the proof. ¤
By substituting λ1 = s into (4), we get the largest and the least Q–

eigenvalue (s + 2 and 0, respectively).

The following simple result will be useful in sequel.

Lemma 4.2 Let Gk (k ≥ 1) be a multigraph (on n vertices) in which any
two vertices are either non–adjacent or joined by exactly k edges. Then
the eigenvalues of Gk are kλ1, kλ2, . . . , kλn where λ1, λ2, . . . , λn are the
eigenvalues of G1.

Proof Let Ak denote the adjacency matrix of Gk. We have

PGk
(λ) = |λI −Ak| = |λI − kA1| = kn

∣∣∣∣
λ

k
I −A1

∣∣∣∣ = knPG1

(
λ

k

)
,

and the proof follows. ¤
Note that any two vertices in a complete multigraph are joined by equal

number of edges. Now, we prove the following theorem.

Theorem 4.2 Let G be a connected regular multigraph on n vertices. The
graph S(G) is Q–integral if and only if G is a complete multigraph.

Proof First, the theorem is obviously true if G is a regular multigraph
on 1 or 2 vertices. Now, since no multigraph has non–integral rational
eigenvalues, in view of Theorem 4.1 we get that S(G) is Q–integral if and
only if all the numbers s2 + 4(λi + 1) (i = 1, 2, . . . , n) are the perfect
squares, where λi (i = 1, 2, . . . , n) are the eigenvalues of G, while s denotes
its degree.

Clearly, s2 + 4(λ + 1) is a perfect square for λ = −1.
The perfect square which is nearest to s2 is (s± 1)2. But, the numbers

s2 and (s± 1)2 do not have the same parity, and therefore (s± 1)2 cannot
be equal to s2 + 4(λ + 1) since s2 and s2 + 4(λ + 1) have the same parity.
The next nearest perfect square is (s±2)2. If we put s2+4(λ+1) = (s±2)2

we get λ = ±s. Further, any other perfect square of the form s2 + 4(λ + 1)
is obtained for λ /∈ [−s, s]. But in this case, λ cannot be an eigenvalue of
G (note, the whole spectrum lies in [−s, s]).
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Therefore, the number s2 + 4(λ + 1) is a perfect square if and only if
either λ = −1 or λ = ±s. Finally, a connected regular multigraph G of
degree s whose all eigenvalues belongs to {−s,−1, s} must be a complete
multigraph of degree s (see the previous lemma, if necessary).

The proof is complete. ¤
We finish this section with the following discussion.
In the previous theorem we determine all connected Q–integral (2, s)–

semiregular bipartite graphs. In this way, we also found all L–integral
graphs which are (2, s)–semiregular bipartite (see Section 1). Let us con-
sider the integrality of graphs obtained. Let Gk be an arbitrary complete
multigraph on n vertices. By virtue of Lemma 4.2, S(Gk) is integral if
and only if S(G1) (= S(Kn)) is integral. Regarding (5), we have that
S(Kn) (n > 2) is integral whenever both 2(n− 1) and n− 2 are the perfect
squares. Hence we have: 2(n − 1) = p2 and n − 2 = q2, for some integers
p and q, i.e. 2(q2 + 1) = p2. It follows that p is even and so we can write
q2 + 1 = 2p′2, where p = 2p′. Now, we get that q is odd, and therefore
2q′2 + 2q′ + 1 = p′2, where q = 2q′ + 1, or equivalently

q′2 + (q′ + 1)2 = p′2.

In fact, we need the Pythagorean triplets with the first two numbers
successive. One can generate infinitely many such triplets by taking q′ =
x2 − y2 and q′ + 1 = 2xy. This yields the well–known Pell equation (x +
y)2−2x2 = 1, with infinitely many solutions (see [7], pp. 238–250). In this
way we get another infinite series of ALQ–integral graphs (see the previous
section). The first 10 Pythagorean triplets with the first two numbers
successive are given in Table 2; each triplet is followed by the order of the
corresponding complete graph (note that S(K1) = K1 is integral, as well).

No. (a, a + 1, c) n
1. (0, 1, 1) 3
2. (3, 4, 5) 51
3. (20, 21, 29) 1683
4. (119, 120, 169) 57123
5. (696, 697, 985) 1940451
6. (4059, 4060, 5741) 65918163
7. (23660, 23661, 33461) 2239277043
8. (137903, 137904, 195025) 76069501251
9. (803760, 803761, 1136689) 2584123765443

10. (4684659, 4684660, 6625109) 87784138523763

Table 2

330



Using the values obtained, one can compute the spectra of the corre-
sponding subdivision graphs.

5 On Q–integral (3, 4) and (3, 5)–semiregular
bipartite graphs

By computer search we consider the smallest graphs of Table 1 (Section 1).
The results obtained are summarized in the following theorem.

Theorem 5.1 There exists only one graph with data corresponding to the
first row of Table 1 (G1); there exist exactly three graphs with data corre-
sponding to the second row (G2, G3 and G4); there are no graphs having
data as in the third row. In the list below, each vertex of the first colour
class is represented by list of its neighbours (the vertices of the second colour
class are labelled by numbers 1, 2, . . . , 9).

G1 :
1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9
1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9

G2 : 1 2 3 1 2 8 2 7 9 3 6 8 4 5 7 4 6 9
1 2 4 1 5 9 3 5 7 3 6 8 4 6 9 5 7 8

G3 : 1 2 3 1 4 7 2 5 9 2 7 8 3 6 8 4 6 9
1 4 7 1 5 8 2 5 9 3 5 7 3 6 8 4 6 9

G4 :
1 2 7 1 5 7 2 4 7 2 6 8 3 5 8 4 6 7
1 3 9 1 5 9 2 5 8 3 4 9 3 6 8 4 6 9

Now, the only Q–integral edge–regular graphs with edge degree at most
five which are not yet determined are those having any of the remaining
possible spectra from Table 1. The next step is considering the graphs
with edge–degree six. In fact, the connected graphs with edge–degree six
are (r, s)–semiregular bipartite, where r + s = 8 holds. With no loss of
generality, we can assume that r ≤ s.

Case r = 1 is simple: the only solution is a star K1,7 (recall, each
complete bipartite graph is Q–integral).

Case r = 2 leads us to the graphs obtained in the previous section.
In case r = 4 we deal with 4–regular bipartite graphs. Having in mind

that a regular graph is integral if and only if it is Q–integral (Section 1) we
have that this problem is equivalent to determining the integral 4–regular
bipartite graphs. Although there are some results concerning 4–regular
integral graphs (see [12] and [13]) those graphs are not determined even if
they are bipartite. Hence, we skip this case at this moment.
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In what follows we proceed to give the possible spectra of connected
Q–integral (3, 5)–semiregular bipartite graphs. We shall need the following
well known result which can be proved by considering the so–called Hoffman
polynomial – see [6]: if λ1 (= r), λ2, ..., λk are all the distinct eigenvalues
of an arbitrary regular graph G (of vertex–degree r) on n vertices, then
(r − λ2) · · · (r − λk) is an integer divisible by n.

Theorem 5.2 A connected (3, 5)–semiregular bipartite Q–integral graph
has one of the Q–spectra shown in Table 3. Each row contains the number
of vertices (n), the number of edges (m), the multiplicities of eigenvalues
0, 1, . . . , 8, the number of quadrangles (q) and the number of hexagons (h).

Proof Let G be a connected (3, 5)–semiregular bipartite graph on n vertices
and m edges. Note, the least and the largest eigenvalues of G are simple
and equal to 0 and 8, respectively. Let αi denote the multiplicity of Q–
eigenvalue i (i = 1, 2, . . . , 7).

By computing we get:

n1 =
m

3
, n2 =

m

5
, n = n1 + n2 =

8m

15
, (6)

where n1 (resp. n2) is the number of vertices of degree 3 (resp. 5).
By using the relations (2) and (1), we get:

QG(λ) = (λ− 3)n1−n2 ·
n2∏

i=1

(
(λ− 3)(λ− 5)− λ2

i

)
, (7)

where λ1, λ2, . . . , λn2 are the first n2 largest eigenvalues of (the adjacency
matrix of) G. Clearly, there are at least n1 − n2 Q–eigenvalues which
are equal to 3, while the other Q–eigenvalues we get as the roots of the
equations

(
(λ− 3)(λ− 5)− λ2

i

)
= 0 (i = 1, 2, . . . , n2). Observe that (λ −

3)(λ−5) ≥ 0 must hold (so that the previous equations have the real roots).
Therefore, each Q–eigenvalue λ of G satisfies λ ∈ [0, 3] ∪ [5, 8]. In other
words, we have α4 = 0. By using the formulas for the spectral moments
Tk (k = 0, 1, . . . , 6) (see Section 2) and having in mind the equalities (6),
we arrive at the following system of Diophantine equations:

α1 + α2 + α3 + α5 + α6 + α7 + 2 =
8
15

m

α1 + 2α2 + 3α3 + 5α5 + 6α6 + 7α7 + 8 = 2m
α1 + 22α2 + 32α3 + 52α5 + 62α6 + 72α7 + 82 = 16m
α1 + 23α2 + 33α3 + 53α5 + 63α6 + 73α7 + 83 = 58m
α1 + 24α2 + 34α3 + 54α5 + 64α6 + 74α7 + 84 = 362m + 8q
α1 + 25α2 + 35α3 + 55α5 + 65α6 + 75α7 + 85 = 2346m + 160q
α1 + 26α2 + 36α3 + 56α5 + 66α6 + 76α7 + 86 = 15530m + 2088q + 12h

332



Solving this system, we get: α1 = α7 = − 3
20 (4(q − 45) + h), α2 = α6 =

1
30 (−22q − 3h + 840), α3 = −q − h

4 + 49, α5 = − q
15 − h

20 + 7 and m =
−7q − 3h

2 + 315. Since n = 8m
15 we have that 15 divides m. Recall that

line graph of a connected (r, s)–semiregular bipartite graph with m edges
is a connected regular graph on m vertices. By using the result mentioned
above this theorem, we find that m divides 8!

4 = 10080 (since α4 = 0,
we have that 2 is not an eigenvalue of the corresponding line graph). On
the other hand, since q and h are non–negative we have m ≤ 315. Thus,
m ∈ {15, 30, 45, 60, 90, 105, 120, 180, 210, 240, 315}. By computing the other
values for every possible m, we obtain the values as in Table 3.

This completes the proof. ¤

n m 0 1 2 3 4 5 6 7 8 q h
8 15 1 0 0 4 0 2 0 0 1 30 60
16 30 1 0 5 4 0 0 5 0 1 15 120
24 45 1 3 2 9 0 3 2 3 1 30 40
32 60 1 3 7 9 0 1 7 3 1 15 100
48 90 1 6 9 14 0 2 9 6 1 15 80
56 105 1 6 14 14 0 0 14 6 1 0 140
56 105 1 9 6 19 0 5 6 9 1 30 0
64 120 1 9 11 19 0 3 11 9 1 15 60
96 180 1 15 15 29 0 5 15 15 1 15 20
112 210 1 18 17 34 0 6 17 18 1 15 0
128 240 1 21 19 39 0 7 19 21 1 15 8
168 315 1 27 28 49 0 7 28 27 1 0 0

Table 3

We consider now the smallest graphs of Table 3 (by hand, and by com-
puter search). The results obtained are summarized in the following theo-
rem.

Theorem 5.3 The only graph with data corresponding to the first row of
Table 3 is K3,5; the only graph with data corresponding to the second (resp.
third) row is H1 (resp. H2). In the list below, each vertex of the first colour
class is represented by list of its neighbours (the vertices of the second colour
class are labelled by numbers 1, 2, . . . , n2).

H1 :
1 2 3 1 3 5 1 4 6 2 4 5 3 4 6
1 2 6 1 4 5 2 3 4 2 5 6 3 5 6
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H2 : 1 4 5 1 4 9 1 6 8 2 4 9 2 6 7 3 5 7 3 7 9
1 4 5 1 6 8 2 4 9 2 6 7 2 6 8 3 5 8 3 7 9

We consider now the Q–spectrum given in row 6 of Table 3.

Theorem 5.4 There does not exist a graph with data corresponding to the
6th row of Table 3.

Proof Substituting the all Q–eigenvalues given in the 6th row into (7) we
get that the corresponding distinct eigenvalues (of the adjacency matrix
A) are ±√15, ±√8, ±√3 and 0. Therefore, the distinct eigenvalues of
matrix A2 are 15, 8, 3 and 0.

Since q = 0 (and also since we are dealing with bipartite graphs), the
multigraph with loops corresponding to A2 has two components which are
both graphs with loops: the first component has n1 = 35 vertices and 3
loops at each vertex; the second has n2 = 21 vertices and 5 loops at each
vertex. So, the spectrum of the first (resp. second) component with loops
excluded is contained in the following set (these eigenvalues are equal to
the eigenvalues of A2 decreased by number of loops at each vertex):

{12, 5, 0, − 3} (resp. {10, 3, − 2, − 5}).

If any graph with the corresponding Q–spectrum exists, there also exist two
regular graphs (of orders 35 and 21, respectively) whose distinct eigenvalues
belong to the above sets. On the other hand, the graph whose distinct
eigenvalues are 10, 3, − 2 and −5 does not exist (see [5], p. 250). In
addition, the strongly regular graph whose distinct eigenvalues belong to
{10, 3, − 2, − 5} also does not exist (this can be easily resolved from the
tables of small strongly regular graphs).

The proof is complete. ¤
The remaining Q–spectra of Tables 1 and 3 should be considered in

forthcoming research.
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