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Abstract. We consider some problems, the solution of which requires a mas-
sive computation. One of them is the question: are there infinitely many
primes of the form

Pn
i=1(−1)n−ii!? Another interesting problem is to deter-

mine the set of absolute values of (0, 1) determinants of order n, for n as large
as possible. The question is answered for n ≤ 8.

There are many simply formulated questions, that can be answered only by a
very hard computation. Here we consider the two such problems. The first group
of questions concerns testing hypotheses about factorial sums, among which is the
Kurepa hypothesis on left factorials. We are also interested in finding the set of de-
terminant absolute values of (0, 1) matrices of order n — for n as large, as possible.
There is some difference between these two problems. The first of them requires a
small memory, but the computation is time consuming. The solving process of the
second problem requires both the large memory, and the long computation time;
one is forced to make some trade-off while advancing towards its (partial) solution.

1. Left factorial hypotheses

1.1. Problem formulation. Let N and P denote the set of positive integers and
the set of prime numbers, respectively. For integers m, n let (m,n) denote their
greatest common divisor, and let m mod n denote the remainder from division of
m by n. The fact that m divides (does not divide) n is written as m |n (m - n).
For n ≥ 1 let

An+1 =
n∑

i=1

(−1)n−ii!

and let

!n =
n−1∑

i=1

i!

(left factorial function defined by Kurepa [17]). The following table lists a few first
members of these sequences.

n 1 2 3 4 5 6 7 8 9 10
n! 1 2 6 24 120 720 5040 40320 362880 3628800
!n 1 2 4 10 34 154 874 5914 46234 409114
An 1 1 5 19 101 619 4421 35899 326981

Here we consider (see [25]) the following three questions from [11]: is it true that

(1) ap := Ap mod p 6= 0 for all p ∈ P?
1
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(this question is raised in connection to [11, Problem B43]: is it true that there are
infinitely many prime numbers among An, n ∈ N?),

(2) rp := !p mod p 6= 0 for all p ∈ P, p > 2?

([11, Problem B44]; an equivalent of the Kurepa hypothesis [17]), and is it true that

(3) for all n ∈ N, n > 3, !n is squarefree

(also in [11, Problem B44]; the second Kurepa hypothesis [17, 19]).
Wagstaff verified that (1) and (2) are true for n < 46340 and n < 50000, re-

spectively. The calculations were extended by Mijajlović [19] ((2) for p ≤ 311009),
Gogić [10] ((1) and (2) for p < 1000000) and Malešević [18] ((2) for p < 3000000).
Mijajlović [19] proved that if n ∈ N , p ∈ P and 2 < p ≤ 1223, then !n is not
divisible by p2. An overview of these questions is given in [15]. We now shortly
present main results from [25] concerning these problems.

1.2. Probabilistic model. Using the assumptions about ap and rp, we see that
(1) and (2) are related to the event

R∞ =
⋂

p∈P
{Rp 6= 0}.

But according to Mertens’s theorem (see [21, Theorem 3.1] for example)

∏

p∈P (2,x)

(
1− 1

p

)
' e−γ

lnx
as x −→∞,

where P (a, b) = P ∩ (a, b) and γ is Euler’s constant, so e−γ ' 0.5615. Therefore,
Pr(R∞) = 0. More precisely, we have the following asymptotic relation

Pr


 ⋂

p∈P (x,xα)

{Rp 6= 0}

 ' 1

α
, as x −→∞.

This heuristic argument suggests that (1) and (2) are not true, and even more,
that the number of counterexamples is infinite. The ”probability” that there is a
counterexample p ∈ P (x, xα) to (1) or (2) is approximately 1−1/α. With the same
probability of 1/2, one counterexample to these claims might be expected in the
intervals

(
23, 26

]
= (8, 64),

(
26, 212

]
= (64, 2048] and

(
212, 224

]
= (2048, 16793216].

The probability of finding counterexamples in
(
2n, 2n+1

]
is approximately 1/(n+1).

The complexity of the search for counterexample ≤ x by the obvious algorithm is
O
(
x2/lnx

)
[19], which makes it very difficult to check (1) or (2), if for example

p > 224.

1.3. The results of computation. The search for values p ∈ P satisfying p |Ap
was performed using a simple assembler routine for an Intel 80486 microcomputer
(at 100MHz) calculating ap. After approximately 130 hours it was found that p |Ap
for p = p1 = 3612703. That fact gives a solution of [11, Problem B43], because for
all n ≥ p1 we have p1 |An, and so An is not prime if n ≥ p1.

The similar search for values p ∈ P satisfying p | !p, approximately 600 hours
long, ended without success. No counterexamples were found to (2) for p < 223.



MASSIVE COMPUTATION AS A PROBLEM SOLVING TOOL 3

Let a be an arbitrary integer. Consider now divisibilities from B44 of [11], i.e.
the prime powers pk (k ≥ 1) dividing !n + a for all large n. For given p ∈ P and
k ∈ N let

m(p, k) = min
{
i ∈ N | pk | i!} .

The number m(p, k) is of course a multiple of p, and if k ≤ 3 then m(p, k) =
(k − δp,2)p. For all n ≥ m(p, k) we have

!n ≡ !m(p, k) (mod pk)

Therefore, for all n ≥ m(p, k)

(4) pk | !n+ a iff pk | !m(p, k) + a.

Especially, if p > 2 and k ≤ 3 then for all n ≥ kp
(5) pk | !n+ a iff pk | !(kp) + a.

The case a = −1 is considered by Mijajlović and Keller (B44 of [11]). Mijajlović
noted that 3 | !n−1 for n ≥ 3, 9 | !n−1 for n ≥ 6, and 11 | !n−1 for n ≥ 11 (by (5)
this is the consequence of 3 | !3−1, 32 | !6−1 and 11 | !11−1). Keller found no new
divisibilities of !n − 1 for n < 106. From Table 1 it can be seen that 3 and 11 are
the only primes p < 223 satisfying rp = 1, and therefore dividing !n−1 for all large
n. In Table 2 the factorizations of !n− 1, n ≤ 42, (obtained using [16]) are given.
The consequence of 112 - !(2× 11)− 1 and 33 - !(3× 3)− 1 is that 112 - !n− 1 for
n ≥ 22 and 33 - !n − 1, for n ≥ 9. We conclude that pk = 32 is the only repeated
factor of !n− 1 for all large n if p < 223.

The case a = 0 is somewhat simpler. Because rp 6= 0 for all p ∈ P (2, 223), there
is not any p < 223 such that p | !n for all large n. The other cases −10 < a < 10
might be considered similarly using Table 1.

The other consequence of (4) is that if for the given prime power pk, k ≥ 1, we
are looking for all n ∈ N such that pk | !n+a, then it is enough to check the values
of n ≤ m(p, k). Let l be the smallest integer satisfying pl - !m(p, l) + a. If l < k
then it is enough to check if pk | !n + a for n < m(p, l) ≤ m(p, k) (n < p if l = 1,
which is most often the case). Otherwise, if l ≥ k, then pk | !m(p, k) + a and so
pk | !n + a for all n ≥ m(p, k). Some repeated factors of !n − 1 may be seen from
Table 2: 34 | !8− 1, 112 | !13− 1, 112 | !21− 1 and 372 | !25− 1. By (5) there are no
other numbers !n− 1 divisible by 33 or 112, because 33 - !9− 1 and 112 - !22− 1.
In Table 3 the triads (p, n, r) are listed satisfying r = !n mod p < 10, p ∈ P (2, 220)
and n ≤ 2p, except those for which !n < p. We see that the only new solution
of p2 | !n − 1, p < 220, n ∈ N, is 416112 | !26144 − 1. From Table 1 we see that
r41611 6= 1 and consequently 41611 - !n− 1 for n ≥ 41611.

Table 3 contains a counterexample to (3): the relation 545032 | !26541 shows that
left factorials are not always squarefree. The existence of a counterexample also
has a ”probabilistic” explanation. Considering the values !n mod p2, 1 ≤ n ≤ p,
as the independent realizations of Rp2 , the check of !n mod p2 6= 0, 1 ≤ n ≤ p, for
fixed p ∈ P corresponds to the event Tp that p independent outcomes of Rp2 are
all different from 0. Using the inequality

1− 1
n
<

(
1− 1

n2

)n
<

(
1− 1

n

)
/

(
1− 1

n2

)

which can be easily proved, we conclude that

Pr(Tp) = (1− 1/p2)p ' 1− 1/p
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for large p. It follows that (3) and (1) have the same asymptotic ”counterexample
densities”.

Gallot [5] noted that the hypothesis (2) can be reformulated as follows: are there
infinitely many primes among the numbers !n/2? He extended the computation of
rp to p ≤ 226, but found no p, satisfying rp = 0. Therefore, the hypothesis (2) is true
for p < 226. Gallot found the interesting congruence !11477429 mod 11477429 = 9.

2. The determinant absolute values of (0, 1) matrices

2.1. Problem formulation. The motivation and the starting point is the old
problem (thanks to R. Dimitrić, who brought my attention to it; see [13, 1, 6]):
what is the largest possible determinant value of determinant of a matrix from An,
the set of all (0, 1) matrices of order n? The consequence of the Hadamard inequality
is that determinant of a ±1 matrix of order n is at most nn/2. An arbitrary (0, 1)
matrix with determinant d can be transformed by elementary transformations into
a ±1 matrix of order n + 1 with the determinant 2nd: by multiplying all rows
by 2, then inserting a new first zero row, then inserting a new column of ones,
and finally by subtracting the first column from all other columns. Therefore, the
determinant of an arbitrary (0, 1) matrix of order n is ≤ (n + 1)(n+1)/2/2n. As
these transformations are invertible, there is one-to-one correspondence between
(0, 1) matrices of order n with the determinant absolute value d, and ±1 matrices
of order n + 1 with the determinant absolute value 2nd. For n = 4k − 1, if there
exist an Hadamard matrix of order n+1 (a ±1 matrix with the orthogonal row set)
then this upper bound is attained. Sloane [22, Sequence A003432/M0720] lists the
maximum determinants of (0, 1) matrices for n ≤ 13. In the table below we give
these values, together with the upper bounds from Hadamard inequality.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
Dn 1 1 2 3 5 9 32 56 144 320 1458 3645 9477
An 1 1 2 3 6 14 32 76 195 521 1458 4248 12867

D-optimal designs are the matrices from An, n = 4k + 2, with the maximum
determinant. Determinant of a (0, 1) matrix of order n = 4k + 1 is bounded above
by ≤ n((n − 1)/2)((n−1)/2. The upper bound is attainable only if 2n = x2 + y2

for some nonnegative integers x, y (see [7, 8, 9, 2, 20]). Cohn [3] gives an D-
optimal design of order 102, and Gysin [12] has found D-optimal designs of order
14, 26, 38, 42, 62, 66, 74, 82, 86, 122, 146, 170, 182, 186, 226.

Here we consider a somewhat more general problem. For a given integer n, as
large as possible, we want to find the all possible determinant modules of matrices
from An. The simplest way to obtain such a result is to compute determinants
of all 2n

2
matrices of order n. As the number of matrices grows very fast, it is

reasonable to partition An into equivalence classes, so that the determinant module
is constant inside a class. Williamson [24] used a similar idea while searching for
matrices with a maximum determinant module. Craigen [4] also considers the range
of the determinant function. He obtained that for n = 7 the range of determinant
values is not a set of consecutive integers.

Let Ψ denote some set of elementary operations on matrices. For arbitrary
two matrices A, B we say that they are ψ-equivalent if B can be obtained from
A by applying finitely many elementary operations from Ψ. As the elementary
operations are invertible, the set An is partitioned by the equivalence relation ψ into
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equivalence classes. The set An can be ordered lexicographically; for arbitrary two
matrices A,B ∈ An we say that A ≤ B if the sequence obtained by concatenating
rows of A is less than or equal the corresponding sequence obtained from B. For
an arbitrary A ∈ An let Āψ denote the ψ equivalence class of A, and let Aψ denote
the ψ-canonical form of A, i.e. the smallest matrix in Āψ — the representative of
the class Āψ.

In what follows, we consider classes of elementary operations, preserving the ma-
trix determinant absolute value (row/column permutations, transposition, addition
of a row/column multiplied by an integer to another row/column). Then we con-
sider possible approaches to classify matrices from An, i.e. to obtain partition of An
into equivalence classes, and to find the set of equivalence class representatives. The
largest possible equivalence classes are the SNF-classes, the classes generated by all
integer elementary operations preserving determinant module. The two matrices
are SNF-equivalent if they have the same Smith normal form (SNF). Generally, a
set of matrices from An, having the same determinant absolute value, consists of a
number of SNF classes. Here we succided in classifying matrices from An, n ≤ 7.
For n = 8 the set of possible determinant absolute values is obtained. Finally, for
n = 9 the set of determinant absolute values is obtained, which is believed to be
complete, or almost complete.

2.2. Elementary operations and the equivalence classes. The row permuta-
tion does not change the absolute value of the matrix determinant. Therefore, if we
want to find the all possible values of determinant module, it is enough to consider
only matrices with lexicographically increasing sequence of rows, which are in fact
the representatives of the corresponding equivalence classes. We call these classes
the RP -classes, and the corresponding representatives are the RP -representatives.
The number of matrices, determinants of which have to be compared, is reduced to(

2n−1
n

)
, i.e. it is reduced approximately by a factor of n!. Using the appropriate pre-

computation, the computation of individual determinants can be reduced to only
one addition. Symmetrically, we can consider CP -classes and CP -representatives,
generated by column permutations.

If we want to further reduce the number of determinants to be compared, we
can try to consider wider equivalence classes, generated simultaneously by row and
column permutations. Let Π denote the set of all row/column permutations. The
set Π defines the π-classes and the π-representatives of these classes. It is not hard
to derive that the number pn = |A/π| of π-classes in An equals
(6)

∑

i1+2i2+...+nin=n

∑

j1+2j2+...+njn=n

C(i1, i2, . . . , in)C(j1, j2, . . . , jn) exp2

n∑
r,s=1

irjs2(r,s),

where C(i1, i2, . . . , in) = n!/(1i1i1! . . . ninin!) is the number of permutations of or-
der n with ir cycles of length r, r = 1, 2, . . . , n. Computation is similar to the
enumeration of bipartite graphs, see [14]. In fact, an arbitrary π-class corresponds
to exactly one bipartite graph with n black and n white nodes. Using (6), it is not
hard to compute pn for a quite large values of n, see Table 4; the table is prepared
using UBASIC [23]. The value of pn is asymptotically close to 2n

2
/(n!)2; Table 4

illustrates that fact. However, it is not simple to generate all π-representatives
sequentially.



6 MIODRAG ŽIVKOVIĆ

The π-neighbors of a given matrix A are the matrices, that can be obtained from
A by an elementary operation P1,j — the exchange of the first and the jth column,
followed by lexicographically sorting the rows. The possible way to obtain the set
of π-representatives is based on generating the sorted list of RP -representatives in
the class Āπ for the given matrix A ∈ An. The sorted list LA of RP -representatives
from Āπ is formed by breadth-first search: the list of representatives is extended
by adding the neighbors of the next member, until the list is exhausted. The list is
maintained in a balanced binary search tree, and so it is obtained in a sorted form.

In order to obtain the set of π-representatives in An, we start from the sorted list
L of all RP -representatives of length

(
2n−1
n

)
. The first matrix A = 0 from the list is

obviously a π-representative. We then mark (in L) all matrices from LA. The first
non-marked member B of L is the following π-representative; then the matrices
from LB are marked in L, and so on, until all matrices in L are marked. At the
end, the sorted list of π-representatives is obtained. This algorithm is constrained
by the space requirement: it is feasible for at most n = 6.

We now describe briefly the branch-and-bound algorithm to obtain the π-repre-
sentative Aπ of the given matrix A. Idea is to maximize lexicographically the ith
row, i = 1, 2, . . . , n, by sequentially putting all remaining rows (by row exchange)
in the place of ith row, and permuting accordingly the columns (branch); if the
value of the ith row obtained is less than the best found so far, the variant is
abandoned (bound). In the average, this algorithm is efficient; but if matrix A
is highly symmetric (the unity matrix, for example), then the search tree cutting
occurs very rarely, and the complexity, measured by row interchanges, approaches
n!. Still, this algorithm is important, because it makes it possible to deal with
π-representatives only.

The other approach to obtain the set of π-representatives, requiring less memory,
but more time, uses the algorithm to find the π-representative Aπ of the given
matrix A. The RP -representatives are considered sequentially. The algorithm to
find the π-representative is started for each RP -representative A. If the matrix B <
A is found during the search, the search is aborted and A is thrown away; otherwise
RP -representative is at the same time the π-representative, and its determinant is
computed.

Consider now the transformation XORi of A = [aij ] ∈ An: the row i is XOR-
ed (added modulo 2) to all other rows of A, remaining itself unchanged. In other
words, for each j = 1, 2, . . . , n, if aij = 1, then the element akj is replaced by 1−akj
for all k 6= i; the other elements of A are left unchanged. Williams [24] observed,
by considering the corresponding ±1 matrix of order n+1, that this operation does
not change the determinant absolute value of a (0, 1) matrix. There is another way
to express this operation as the sequence of elementary operations:

(1) ith row is subtracted from all other rows; in the matrix obtained, the ele-
ments in columns corresponding to ones in the ith row, belong to the set
{−1, 0};

(2) the columns corresponding to ones in the ith row are multiplied by −1;
(3) the ith row is multiplied by −1.

Strictly speaking, row XOR is not an elementary row operation. Still, this op-
eration is a composition of elementary operations, and preserves the determinant
absolute value of a matrix. Similarly, the XORing of the jth column to all other
columns can be considered. Denote by Ξ the set of all row/column permutations



MASSIVE COMPUTATION AS A PROBLEM SOLVING TOOL 7

and the row/column XOR-s. These operations correspond to a relation on the set
An. The corresponding transitive closure, the equivalence relation ξ, defines the
partition of An. The composition of two row/column XOR-s is always equivalent
to a single row/column XOR operation. Therefore, each class Āξ consists of at
most (n + 1)2 smaller classes Āπ. In other words, each class Āξ contains at most
(n+ 1)2 π-representatives.

Consider next the elementary operation SUBij , denoting the replacement of the
jth row by the row obtained by subtraction of ith row from the jth row. The
operation SUBij , applied to the matrix A ∈ An, gives the matrix from the same
set, iff the set of ones in the row i is the subset of the set of ones in the row j
(i.e. each element of the ith row is ≤ than the corresponding element in the jth
row; or shortly: if the ith row is the subset of the jth row). The SUB operation
on columns is analogously defined. We suppose that the SUB operation is allowed
only if the result is inside An; the SUB-neighbors of a given matrix A ∈ An are all
matrices that can be obtained applying a row/column SUB operation to A.

It seems that, in order to have a complete set of linear operations on matrices,
one must also consider the operation ADDij , the addition of ith row/column to jth
row/column, under the condition that all elements of the row/column sum are ≤ 1.
However, the row operation ADDij is equivalent to the sequence of tree operations:
XORi, SUBij , XORi, and so it is unnecessary to consider that operation — the
transitive closure remains the same.

Denote by Σ the set of all row/column permutations, and the row/column XOR-
s, and the row/column SUB-s. These operations correspond to a relation on An.
The corresponding transitive closure, the equivalence relation σ, defines the parti-
tion of An. Unlike the class Āξ, which consists of at most (n+1)2 π-representatives,
the number of ξ-representatives in a single class Āσ is not bounded by any such
simple almost uniform bound.

The largest possible equivalence classes are the SNF-classes, the classes generated
by all integer elementary operations preserving determinant module. If all integer
elementary operations are allowed (except multiplying a row/column by an integer
different from ±1), then there are matrices A ∈ An, that can be transformed into a
matrix outside An. Using such elementary operations, an arbitrary integer matrix
can be transformed into its canonical form (the SNF) — a diagonal matrix, such
that each diagonal element is a nonnegative integer, dividing the all remaining di-
agonal elements. Therefore, for arbitrary two matrices A,B ∈ An we say that they
are SNF-equivalent if they have the same SNF. The relation of SNF-equivalence
defines SNF-classes in An. In the general case the set of matrices from An with
the fixed determinant absolute value, consists of one or more SNF-classes. For ex-
ample, the two SNF-classes in A5 with the representatives (03, 05, 09, 11, 1E) and
(03, 0C, 15, 16, 19) (the rows of these matrices are represented by hexadecimal num-
bers) have the equal determinant absolute value 4, but their SNF’s diag (1, 1, 1, 1, 4)
and diag (1, 1, 1, 2, 2) are different.

Unlike the other equivalence classes, the SNF classes cannot be constructed in a
usual manner, by a depth-first search, starting from an arbitrary member.

2.3. Iterative classification of (0, 1) matrices. By bordering of a matrix A ∈
An we mean the construction of all matrices B ∈ An+1, such that the lower left
n × n block in B is equal to A. In other words, all possible matrices obtained
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by bordering A from the left and upper side by 2n + 1 elements from {0, 1} are
generated.

Williamson [24] observed the following useful fact. If the matrices A,B ∈ An are
ξ-equivalent (i.e. Aξ = Bξ), then the set of ξ-representatives of matrices obtained
by bordering A is equal to the the set of ξ-representatives of matrices obtained by
bordering B. More precisely, if A′ is the ξ-representative of an arbitrary matrix
obtained by bordering A, then there exists a matrix B′, the ξ-representative of
some matrix obtained by bordering B, such that A′ = B′. Indeed, from Aξ = Bξ

it follows that there exists a sequence of row/column permutations/XOR’s, that
transforms A into B. The same sequence of transformations, applied to the last n
rows and columns of A′, transforms it into a matrix C ∈ An+1, whose lower right
n× n block is B. We can take the matrix C as the matrix B′.

Using that observation, we conclude that if we search for all ξ-representatives
of order n + 1, then it is enough to consider matrices, obtained by bordering all
ξ-representatives of order n. The task could be divided in two phases. The first
part is to find π-representatives of all matrices obtained by bordering the set of
ξ-representatives of order n. This is less time consuming, than finding the ξ-
representatives. Then the list of π-representatives is filtered. For each matrix
A from the list, the class Āξ (as the collection of π-representatives) and the repre-
sentative Aξ is found, and then all π-representatives from Āξ are eliminated from
the list. As the size of ξ-classes is bounded, the number of ξ-representativves grows
fast with n. But for n = 7 the classes fitted in the memory of a PC, and the com-
plete set of ξ-representatives is obtained. The sets of ξ-representatives are checked
by summing the numbers of π-representatives in each ξ-class. The figures obtained
agree completely with the values given in Table 4.

The following task was to classify the ξ-representatives into σ- and SNF-classes.
The ξ-representatives were classified first according to SNF, by computing the SNF
of each representative. Then, the each sorted group L of representatives with the
same SNF is treated separately. The main loop of the procedure is to take from L
the next ξ-representative (and therefore the σ-representative), the matrix A, then
to traverse its class Āσ (considering only the π-representatives of its elements),
and to eliminate the elements of L contained in Āσ. The problem arises if the
number of π-representatives in Āσ is very large. For example, the class Āσ of
A = (00, 01, 02, 04, 08, 10, 20) contains 13834240 π-representatives.

The final task was to obtain some information about A8 and A9. The determi-
nants of all matrices obtained by bordering given matrix A ∈ An can be computed
very efficiently using the cofactors of A. Using that procedure, determinants of all
matrices obtained by bordering ξ-representatives in A7 were computed. Procedure
to find SNF’s of matrices obtained by bordering A is more complicated. That pro-
cedure is applied only to σ-representatives in A7. Therefore the set of different
SNF’s of order 8 might not be complete. In Table 5 the number 129, the lower
bound for the number of different SNF’s of order 8, is therefore marked by an as-
terisk. The set of determinant absolute values in A9 is also estimated from below,
by doubly bordering all ξ-representatives in A7, and by computing determinants of
all obtained matrices of order 9.

The results are summarized in Table 5. For n = 1, 2, . . . let pn, qn, rn, sn, dn
denote the number of π-, ξ-, σ-, SNF- representatives and the number of different
determinant absolute values in An, respectively. The smallest n for which there
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exist a SNF class, consisting of more than one σ-class, is 5. In Table 6 the complete
list of σ-representatives in An is given for n ≤ 7. The representatives are given by
hexadecimaly coded rows. For each representative the diagonal elements of its SNF
are given.
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Table 1. The values of ap, p < 222, and rp, p < 223, close to 0 or p

p ap p p− ap p rp p p− rp
2 1 2 1 2 0
3 1 3 2 3 1 3 2
5 4 5 1 5 4 5 1
7 3 7 4 7 6 7 1

11 4 11 7 11 1 13 3
17 8 13 1 19 9 17 4
31 9 17 9 31 2 23 2
41 1 19 5 37 5 67 2
43 5 23 5 41 4 71 3
47 6 37 1 163 4 113 4
67 5 71 7 197 9 139 5
79 4 109 5 277 7 227 2

157 6 131 3 373 2 349 6
191 6 197 2 467 3 2437 5
307 5 229 9 7717 7 4337 5
641 3 367 4 11813 6 10331 2
647 5 463 1 33703 9 77687 3

1109 2 691 2 2275843 3 126323 8
2741 3 983 3 3467171 5 274453 1
3559 3 1439 2 4709681 9

394249 1 11119 3
2934901 1 16007 4
3612703 0 22619 3

32833 6
3515839 2

Table 2. The factorizations of !n− 1, n ≤ 42.

n The factorization of !n− 1

3 3
4 32

5 3× 11
6 32 × 17
7 32 × 97
8 34 × 73
9 32 × 11× 467

10 32 × 131× 347
11 32 × 11× 40787
12 32 × 11× 443987
13 32 × 112 × 23× 20879
14 32 × 11× 821× 83047
15 32 × 11× 2789× 340183
16 32 × 11× 107× 509× 259949
17 32 × 11× 225498914387
18 32 × 11× 163× 20143× 1162943
19 32 × 11× 19727× 3471827581
20 32 × 11× 29× 43× 1621× 641751001
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Table 3. Continued

n The factorization of !n− 1

21 32 × 112 × 53× 67× 662348503367
22 32 × 11× 877× 3203× 41051× 4699727
23 32 × 11× 11895484822660898387
24 32 × 11× 139× 2129333× 922459185301
25 32 × 11× 372 × 29131483× 163992440081
26 32 × 11× 454823× 519472957× 690821017
27 32 × 11× 107× 173× 7823× 12227× 1281439× 1867343
28 32 × 11× 431363× 2882477797× 91865833117
29 32 × 11× 191× 47793258077× 349882390108241
30 32 × 11× 37× 283× 5087× 1736655143086866180331
31 32 × 11× 2771826449193354891007108898387
32 32 × 11× 1231547× 306730217× 227214279676815713
33 32 × 11× 41× 163× 224677× 278437× 6562698554476756561
34 32 × 11× 109× 839× 2819× 40597679× 8642572321688037037
35 32 × 11× 3072603482270933019578343003268898387
36 32 × 11× 7523968684626643× 14280739323850758510209
37 32 × 11× 542410073× 7125524357434108671946525659019
38 32 × 11× 379× 2677× 5685998930867× 24769422762368668966567
39 32 × 11× 127× 338944799× 126050058872020979628982810240819
40 32 × 11× 956042657× 221187999196843747210838711867563891
41 32 × 11× 8453033680104197032254976173172281742468898387
42 32 × 11× 1652359939× 276306566079013× 758627421394906687355741

Table 3. The small values of !n mod p2 < 10, for p ∈ P , p < 220,
1 ≤ n ≤ 2p

p n !n mod p2 p n !n mod p2

2 3 0 83 60 5
2 4 2 163 183 4
3 4 1 163 273 4
3 5 7 173 152 3
3 6 1 197 355 9
5 5 9 373 185 6
5 6 4 373 514 2
5 9 9 467 730 3
7 6 7 467 902 3

11 13 1 3119 306 6
11 21 1 4357 837 7
17 7 7 7717 9402 7
17 11 6 7717 15415 7
19 17 9 8297 4727 7
19 20 9 33703 39795 9
37 25 1 33703 43801 9
37 63 5 33703 52337 9
41 55 4 41611 26144 1
43 9 9 54503 26541 0
47 19 8 302837 283148 8
59 41 9 351731 135646 8
67 29 8
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Table 4. The number pn of π-classes in An for n ≤ 17

n pn/(2
n2
/n!2) pn

1 1.0000000000 2

2 1.7500000000 7

3 2.5312500000 36

4 2.7861328125 317

5 2.4135589600 5624

6 1.8980735913 251610

7 1.5180343955 33642660

8 1.2942373440 14685630688

9 1.1691457540 21467043671008

10 1.0983637472 105735224248507784

11 1.0574704398 1764356230257807614296

12 1.0335474282 100455994644460412263071692

13 1.0194975307 19674097197480928600253198363072

14 1.0112617871 13363679231028322645152300040033513414

15 1.0064595112 31735555932041230032311939400670284689732948

16 1.0036786649 265481580762520930072845197261091304921260990676802

17 1.0020805061 7878332940506569588782402627237881550737859569467984886964

Table 5. The equivalence classes sizes, and the determinant ab-
solute value ranges

n pn qn rn sn dn det. abs. val. range

1 2 2 2 2 2 0− 1

2 7 3 3 3 2 0− 1

3 36 12 5 5 3 0− 2

4 317 39 8 8 4 0− 3

5 5624 388 15 14 6 0− 5

6 251610 8102 30 26 10 0− 9

7 33642660 656103 81 56 22 0− 18, 20, 24, 32

8 14685630688 ∗129 46 0− 40, 42, 44, 45, 48, 56

9 21467043671008 ∗114 0− 102, 104, 105, 108, 110, 112,
116, 117, 120, 125, 128, 144
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Table 6. Classification of (0, 1) matrices of order n ≤ 7

n SNF det ξ-size π-size the σ-representative

2 1 0 0 0 1 1 0 0

2 1 0 0 1 4 0 1

3 1 1 1 1 2 1 2

3 1 0 0 0 0 1 1 0 0 0

2 1 0 0 0 4 9 0 0 1

3 1 1 0 0 4 18 0 1 2

4 1 1 1 1 2 7 1 2 4

5 1 1 2 2 1 1 3 5 6

4 1 0 0 0 0 0 1 1 0 0 0 0

2 1 0 0 0 0 4 16 0 0 0 1

3 1 1 0 0 0 12 84 0 0 1 2

4 1 1 1 0 0 14 150 0 1 2 4

5 1 1 2 0 0 1 5 0 3 5 6

6 1 1 1 1 1 5 49 1 2 4 8

7 1 1 1 2 2 1 10 1 6 A C

8 1 1 1 3 3 1 2 3 5 9 E

5 1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 1 0 0 0 0 0 9 25 0 0 0 0 1

3 1 1 0 0 0 0 37 260 0 0 0 1 2

4 1 1 1 0 0 0 113 1346 0 0 1 2 4

5 1 1 2 0 0 0 5 25 0 0 3 5 6

6 1 1 1 1 0 0 141 2589 0 1 2 4 8

7 1 1 1 2 0 0 17 210 0 1 6 A C

8 1 1 1 3 0 0 2 15 0 3 5 9 E

9 1 1 1 1 1 1 39 831 1 2 4 8 10

10 1 1 1 1 2 2 15 254 1 2 C 14 18

11 1 1 1 1 3 3 5 51 1 6 A 12 1C

12 1 1 1 1 4 4 1 2 3 5 9 11 1E

1 10 3 5 A 16 19

13 1 1 1 1 5 5 1 3 3 5 E 16 19

14 1 1 1 2 2 4 1 2 3 C 15 16 19

6 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

2 1 0 0 0 0 0 0 9 36 0 0 0 0 0 1

3 1 1 0 0 0 0 0 76 660 0 0 0 0 1 2

4 1 1 1 0 0 0 0 472 7586 0 0 0 1 2 4

5 1 1 2 0 0 0 0 10 86 0 0 0 3 5 6

6 1 1 1 1 0 0 0 1913 47605 0 0 1 2 4 8

7 1 1 1 2 0 0 0 115 2120 0 0 1 6 A C

8 1 1 1 3 0 0 0 9 91 0 0 3 5 9 E

9 1 1 1 1 1 0 0 3262 112080 0 1 2 4 8 10

10 1 1 1 1 2 0 0 511 14986 0 1 2 C 14 18

11 1 1 1 1 3 0 0 75 1618 0 1 6 A 12 1C

12 1 1 1 1 4 0 0 2 15 0 3 5 9 11 1E

14 292 0 3 5 A 16 19

13 1 1 1 1 5 0 0 3 46 0 3 5 E 16 19

14 1 1 1 2 2 0 0 4 78 0 3 C 15 16 19

15 1 1 1 1 1 1 1 952 39637 1 2 4 8 10 20
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Table 6. Continued

n SNF det ξ-size π-size the σ-representative

16 1 1 1 1 1 2 2 442 17642 1 2 4 18 28 30

17 1 1 1 1 1 3 3 128 4079 1 2 C 14 24 38

18 1 1 1 1 1 4 4 52 1685 1 6 A 12 22 3C

19 1 1 1 1 1 5 5 17 427 1 6 A 1C 2C 32

1 2 3 5 9 11 21 3E

20 1 1 1 1 2 2 4 17 473 1 6 18 2A 2C 32

21 1 1 1 1 1 6 6 9 263 3 5 9 16 2E 31

22 1 1 1 1 1 7 7 1 6 3 5 9 1E 2E 31

2 48 3 5 E 18 29 36

23 1 1 1 1 1 8 8 1 6 3 5 E 19 29 36

1 21 3 C 15 1A 26 39

24 1 1 1 1 2 4 8 1 12 3 C 15 1A 26 29

25 1 1 1 1 1 9 9 1 7 3 D 15 1A 26 39

26 1 1 1 2 2 2 8 1 2 7 19 1E 2A 2D 33

7 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 16 49 0 0 0 0 0 0 1

3 1 1 0 0 0 0 0 0 170 1428 0 0 0 0 0 1 2

4 1 1 1 0 0 0 0 0 1908 31994 0 0 0 0 1 2 4

5 1 1 2 0 0 0 0 0 34 246 0 0 0 0 3 5 6

6 1 1 1 1 0 0 0 0 17596 501563 0 0 0 1 2 4 8

7 1 1 1 2 0 0 0 0 694 13645 0 0 0 1 6 A C

8 1 1 1 3 0 0 0 0 30 400 0 0 0 3 5 9 E

9 1 1 1 1 1 0 0 0 105808 4358421 0 0 1 2 4 8 10

10 1 1 1 1 2 0 0 0 9295 316904 0 0 1 2 C 14 18

11 1 1 1 1 3 0 0 0 853 22902 0 0 1 6 A 12 1C

12 1 1 1 1 4 0 0 0 9 92 0 0 3 5 9 11 1E

159 3622 0 0 3 5 A 16 19

13 1 1 1 1 5 0 0 0 23 413 0 0 3 5 E 16 19

14 1 1 1 2 2 0 0 0 58 1032 0 0 3 C 15 16 19

15 1 1 1 1 1 1 0 0 261882 13834240 0 1 2 4 8 10 20

16 1 1 1 1 1 2 0 0 53874 2624469 0 1 2 4 18 28 30

17 1 1 1 1 1 3 0 0 8633 376699 0 1 2 C 14 24 38

18 1 1 1 1 1 4 0 0 3024 123510 0 1 6 A 12 22 3C

19 1 1 1 1 1 5 0 0 631 23474 0 1 6 A 1C 2C 32

2 15 0 3 5 9 11 21 3E

20 1 1 1 1 2 2 0 0 927 37489 0 1 6 18 2A 2C 32

21 1 1 1 1 1 6 0 0 361 13823 0 3 5 9 16 2E 31

22 1 1 1 1 1 7 0 0 6 93 0 3 5 9 1E 2E 31

58 2040 0 3 5 E 18 29 36

23 1 1 1 1 1 8 0 0 6 113 0 3 5 E 19 29 36

19 415 0 3 C 15 1A 26 39

24 1 1 1 1 2 4 0 0 27 893 0 3 C 15 1A 26 29

25 1 1 1 1 1 9 0 0 7 189 0 3 D 15 1A 26 39

26 1 1 1 2 2 2 0 0 2 25 0 7 19 1E 2A 2D 33

1 2 0 F 33 3C 55 5A 66

27 1 1 1 1 1 1 1 1 91764 5593528 1 2 4 8 10 20 40

28 1 1 1 1 1 1 2 2 58179 3493129 1 2 4 8 30 50 60
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Table 6. Continued

n SNF det ξ-size π-size the σ-representative

29 1 1 1 1 1 1 3 3 17707 1020752 1 2 4 18 28 48 70

30 1 1 1 1 1 1 4 4 10189 581948 1 2 C 14 24 44 78

31 1 1 1 1 1 1 5 5 3169 172714 1 2 C 14 38 58 64

32 1 1 1 1 1 2 2 4 3220 184475 1 2 C 30 54 58 64

33 1 1 1 1 1 1 6 6 3319 185686 1 6 A 12 2C 5C 62

1 2 3 5 9 11 21 41 7E

34 1 1 1 1 1 1 7 7 749 39068 1 6 A 12 3C 5C 62

35 1 1 1 1 1 1 8 8 645 32490 1 6 A 1C 32 52 6C

36 1 1 1 1 1 2 4 8 317 15119 1 6 18 2A 34 4C 52

37 1 1 1 1 1 1 9 9 252 12603 1 6 1A 2A 34 4C 72

1 6 3 5 9 11 3E 5E 61

38 1 1 1 1 2 2 2 8 29 750 1 E 32 3C 54 5A 66

39 1 1 1 1 1 1 10 10 1 3 3 5 9 1E 2E 4E 71

198 10091 3 5 9 1E 30 51 6E

40 1 1 1 1 1 1 11 11 1 11 3 5 9 1E 31 51 6E

54 2587 3 5 E 16 38 59 66

41 1 1 1 1 1 1 12 12 1 7 3 5 E 16 39 59 66

69 3235 3 5 E 19 32 56 69

1 21 3 5 19 2E 36 4E 61

42 1 1 1 1 1 1 13 13 1 9 3 5 E 19 36 56 69

15 658 3 5 18 29 36 4E 71

1 19 3 5 19 29 3E 4E 71

43 1 1 1 1 1 3 3 9 37 1358 3 5 18 28 49 4E 71

44 1 1 1 1 1 2 6 12 1 21 3 5 19 29 36 4E 51

26 962 3 5 19 2A 36 4E 61

1 14 3 D 31 3E 55 5A 66

45 1 1 1 1 1 1 14 14 1 19 3 5 19 29 36 4E 71

9 496 3 C 15 26 39 5A 65

2 100 3 D 15 26 38 5A 61

46 1 1 1 1 1 1 16 16 1 30 3 C 15 36 39 5A 65

3 62 3 D 16 2A 31 58 65

1 21 3 D 16 2A 35 59 66

47 1 1 1 1 2 2 4 16 2 10 3 C 30 55 5A 66 69

48 1 1 1 1 1 2 8 16 5 89 3 C 31 55 5A 66 69

1 13 3 D 31 55 5A 66 69

49 1 1 1 1 1 4 4 16 1 6 3 C 35 3A 55 66 69

1 7 3 D 16 2A 31 59 66

50 1 1 1 1 1 1 15 15 3 59 3 D 15 26 38 5E 61

1 28 3 D 15 26 39 5A 65

2 128 3 D 16 2A 35 58 66

51 1 1 1 1 1 1 17 17 1 19 3 D 16 2E 39 5A 65

1 8 7 19 2A 35 4C 69 72

52 1 1 1 1 1 3 6 18 1 2 3 1D 2D 36 3A 4E 71

1 8 7 19 2A 34 4D 56 63

53 1 1 1 1 2 2 6 24 1 5 7 19 2A 34 4C 52 61

54 1 1 1 1 1 2 10 20 1 10 7 19 2A 34 4C 52 63

55 1 1 1 1 1 1 18 18 1 24 7 19 2A 34 4C 53 65

56 1 1 1 2 2 2 4 32 1 1 F 33 3C 55 5A 66 69


